A Multilingual OCR Benchmark for Food Packaging Ingredient Extraction
HalalBench is the first large-scale, multilingual benchmark for evaluating OCR engines on real-world food packaging images. It addresses a critical gap in OCR evaluation: existing benchmarks focus on documents, scenes, or handwriting, but none target the curved, multilingual, low-contrast text found on ingredient labels.
| Metric | Value |
|---|---|
| Total images | 1,043 |
| Total annotations | 36,438 |
| Languages | 14 |
| OCR engines evaluated | 4 |
| Annotation format | COCO |
We evaluate four OCR engines across all 14 languages and report macro-averaged F1 scores:
| Engine | Exact F1 | Fuzzy F1 (d<=2) | Catastrophic Rate |
|---|---|---|---|
| ML Kit | 0.487 | 0.546 | 0.312 |
| docTR | 0.465 | 0.519 | 0.341 |
| EasyOCR | 0.210 | 0.268 | 0.587 |
| RapidOCR | 0.189 | 0.243 | 0.614 |
No engine exceeds 0.55 fuzzy F1, confirming that food packaging OCR remains an unsolved problem.
Arabic, Danish, Dutch, English, French, German, Indonesian, Japanese, Korean, Malay, Norwegian, Swedish, Thai, Turkish
git clone https://github.com/halallens-no/halalbench.git
cd halalbench
pip install -r benchmark/requirements.txtSee data/README.md for download instructions and format documentation.
# Evaluate with pre-computed OCR predictions
python benchmark/evaluate.py \
--annotations data/annotations.json \
--predictions predictions/mlkit_predictions.json \
--output results/
# Compute metrics only
python benchmark/evaluate.py \
--annotations data/annotations.json \
--predictions predictions/mlkit_predictions.json \
--metrics-onlyhalalbench/
benchmark/
evaluate.py # Main evaluation script
metrics.py # F1, fuzzy F1, catastrophic rate
requirements.txt # Python dependencies
data/
README.md # Dataset documentation
annotations.json # COCO-format ground truth (after download)
assets/
halalbench-logo.png # Logo
LICENSE # MIT (code) + CC BY-SA 4.0 (dataset)
README.md # This file
If you use HalalBench in your research, please cite:
@article{halalbench2026,
title = {HalalBench: A Multilingual OCR Benchmark for Food Packaging Ingredient Extraction},
author = {HalalLens Research},
journal = {arXiv preprint arXiv:XXXX.XXXXX},
year = {2026},
url = {https://arxiv.org/abs/XXXX.XXXXX}
}- Code (benchmark scripts, evaluation tools): MIT License
- Dataset (images, annotations): CC BY-SA 4.0
See LICENSE for full terms.
- HalalLens App: https://halallens.no
- Paper: arXiv:XXXX.XXXXX
- Dataset (Zenodo): doi:10.5281/zenodo.18674795
- Dataset Download: See
data/README.md
Built by HalalLens Research — https://halallens.no
