Formally verified mathematical relations from the GIFT framework. All theorems proven in Lean 4 and Coq.
Lean/GIFT/
├── Core.lean # Constants (dim_E8, b2, b3, H*, ...)
├── Certificate.lean # Master theorem (250+ relations)
├── Foundations/ # E8 roots, G2 cross product, Joyce
│ └── Analysis/G2Forms/ # G2 structure: d, ⋆, TorsionFree, Bridge
├── Geometry/ # DG-ready infrastructure [v3.3.7] AXIOM-FREE!
│ ├── Exterior.lean # Λ*(ℝ⁷) exterior algebra
│ ├── DifferentialFormsR7.lean # DiffForm, d, d²=0
│ ├── HodgeStarCompute.lean # Explicit Hodge star (Levi-Civita)
│ └── HodgeStarR7.lean # ⋆, ψ=⋆φ PROVEN, TorsionFree
├── Spectral/ # Spectral theory [v3.3.9]
│ ├── MassGapRatio.lean # λ₁ = 14/99
│ └── YangMills.lean # Gauge theory connection
├── Zeta/ # GIFT-Zeta correspondences [v3.3.10]
│ ├── Basic.lean # gamma, lambda axioms
│ ├── Correspondences.lean # γ_n ~ GIFT constants
│ └── MultiplesOf7.lean # Structure theorem
├── Moonshine/ # Monster group connections [v3.3.11]
│ ├── MonsterCoxeter.lean# Monster dim via Coxeter numbers NEW!
│ ├── Supersingular.lean # 15 primes GIFT-expressible
│ └── MonsterZeta.lean # Monster-Zeta Moonshine
├── Algebraic/ # Octonions, Betti numbers
├── Observables/ # PMNS, CKM, quark masses, cosmology
└── Relations/ # Physical predictions
COQ/ # Coq mirror proofs
gift_core/ # Python package (giftpy)
pip install giftpyfrom gift_core import *
print(SIN2_THETA_W) # Fraction(3, 13)
print(GAMMA_GIFT) # Fraction(511, 884)
print(TAU) # Fraction(3472, 891)# Lean 4
cd Lean && lake build
# Coq
cd COQ && makeFor extended observables, publications, and detailed analysis:
GIFT Core v3.3.11