Skip to content

fairdataihub/poster2json

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

logo

poster2json

Convert scientific posters (PDF/images) to structured JSON metadata using Large Language Models.


contributors stars open issues license

PyPI Version PyPI Downloads DOI



Description

poster2json extracts structured metadata from scientific conference posters (PDF or image format) into machine-actionable JSON conforming to the poster-json-schema.

The pipeline uses:

  • Llama 3.1 8B (fine-tuned) for JSON structuring
  • Qwen2-VL-7B for vision-based OCR of image posters
  • pdfalto for layout-aware PDF text extraction

Quick Start

Installation

pip install poster2json

CLI Usage

# Extract metadata from a poster
poster2json extract poster.pdf -o result.json

# Validate extracted JSON
poster2json validate result.json

# Process multiple posters
poster2json batch ./posters/ -o ./output/

Python API

from poster2json import extract_poster, validate_poster

# Extract metadata
result = extract_poster("poster.pdf")
print(result["titles"][0]["title"])

# Validate the result
is_valid = validate_poster(result)

Output Format

Output conforms to the poster-json-schema (DataCite-based):

{
  "$schema": "https://posters.science/schema/v0.1/poster_schema.json",
  "creators": [
    {
      "name": "Garcia, Sofia",
      "givenName": "Sofia",
      "familyName": "Garcia",
      "affiliation": ["University"]
    }
  ],
  "titles": [
    { "title": "Machine Learning Approaches to Diabetic Retinopathy Detection" }
  ],
  "posterContent": {
    "sections": [
      { "sectionTitle": "Abstract", "sectionContent": "..." },
      { "sectionTitle": "Methods", "sectionContent": "..." },
      { "sectionTitle": "Results", "sectionContent": "..." }
    ]
  },
  "imageCaptions": [{ "captions": ["Figure 1.", "ROC curves showing..."] }],
  "tableCaptions": [{ "captions": ["Table 1.", "Performance metrics"] }]
}

System Requirements

Requirement Specification
GPU NVIDIA CUDA-capable, ≥16GB VRAM
RAM ≥32GB recommended
Python 3.10+
OS Linux, macOS, Windows (via WSL2)

Performance

Validated on 10 manually annotated scientific posters:

Metric Score Threshold
Word Capture 0.96 ≥0.75
ROUGE-L 0.89 ≥0.75
Number Capture 0.93 ≥0.75
Field Proportion 0.99 0.30–2.50

Pass Rate: 10/10 (100%)

Documentation

Document Description
Architecture Technical details & methodology
Evaluation Validation metrics & results

Development Setup

# Clone the repository
git clone https://github.com/fairdataihub/poster2json.git
cd poster2json

# Create a virtual environment
python -m venv .venv

# Activate the virtual environment
source venv/bin/activate
.venv\Scripts\activate # On Windows

# Install poetry
pip install poetry

# Install dependencies
poetry install

# Run tests
poe test

# Format code
poe format

If you are on windows and have multiple python versions, you can use the following commands:

py -0p # list all python versions

py -3.12 -m venv .venv

License

MIT License - see LICENSE for details.

Citation

@software{poster2json2026,
  title = {poster2json: Scientific Poster to JSON Metadata Extraction},
  author = {O'Neill, James and Soundarajan, Sanjay and Portillo, Dorian and Patel, Bhavesh},
  year = {2026},
  url = {https://github.com/fairdataihub/poster2json},
  doi = {10.5281/zenodo.18320010}
}

Acknowledgements

Contributing

Contributions welcome! Please see CONTRIBUTING.md for guidelines.

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published