Anaconda Downloads:
PIP Downloads:
(C) Eric J. Drewitz 2025-2026
ANNOUNCEMENT: xmACIS2Py < 2.0 is now depreciated and replaced with xmACIS2Py >= 2.0
How To Install
Copy and paste either command into your terminal or anaconda prompt:
Install via Anaconda
conda install xmacis2py
Install via pip
pip install xmacis2py
How To Update To The Latest Version
Copy and paste either command into your terminal or anaconda prompt:
Update via Anaconda
This is for users who initially installed WxData through Anaconda
conda update xmacis2py
Update via pip
This is for users who initially installed WxData through pip
pip install --upgrade xmacis2py
xmACIS2Py 2.0 Series Documentation and Jupyter Lab Tutorials
Jupyter Lab Tutorials
Documentation
Data Access
Analysis Tools
- Period Mean
- Period Median
- Period Mode
- Period Percentile
- Period Standard Deviation
- Period Variance
- Period Skewness
- Period Kurtosis
- Period Maximum
- Period Minimum
- Period Sum
- Period Rankings
- Running Sum
- Running Mean
- Detrend Data
- Number of Missing Days
- Number of Days At Or Below Value
- Number of Days At Or Above Value
- Number of Days Below Value
- Number of Days Above Value
- Number of Days At Value
Graphical Summaries
- Compreheisive Temperature Summary
- Maximum Temperature Summary
- Minimum Temperature Summary
- Average Temperature Summary
- Average Temperature Departure Summary
- Heating Degree Day Summary
- Cooling Degree Day Summary
- Growing Degree Day Summary
- Precipitation Summary
Documentation For Legacy Users
xmACIS2Py 1.0 Series (Depreciated/Legacy) Documentation and Jupyter Lab Tutorials
-
MetPy: May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S. C., and Marsh, P. T., 2022: MetPy: A Meteorological Python Library for Data Analysis and Visualization. Bull. Amer. Meteor. Soc., 103, E2273-E2284, https://doi.org/10.1175/BAMS-D-21-0125.1.
-
NumPy: Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 10.1038/s41586-020-2649-2. (Publisher link).
-
Pandas: Pandas: McKinney, W., & others. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51–56).
-
WxData: Eric J. Drewitz. (2025). edrewitz/WxData: WxData 1.1.4 Released (WxData1.1.4). Zenodo. https://doi.org/10.5281/zenodo.17862030
-
scipy: Virtanen, P., Gommers, R., Oliphant, T.E. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

