-
-
Notifications
You must be signed in to change notification settings - Fork 27
perf: optimize entries, keys, and values methods #386
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Hi! the benchmarks don't cover the changes you've made. |
|
Could you sync with the main branch to get the updated benchmarks, and share the results of |
|
I did the comparison locally; here's a summary from gpt-oss:120b Focused comparison –
|
| Method | Avg time (run 1) | Avg time (run 2) | Δ % (time) | Ops/sec (run 1) | Ops/sec (run 2) | Δ % (throughput) |
|---|---|---|---|---|---|---|
lru.keys |
0.002259 ms | 0.002168 ms | ‑4.0 % (faster) | 442 667 | 461 189 | +4.2 % |
lru.values |
0.018052 ms | 0.016303 ms | ‑9.7 % (faster) | 55 395 | 61 340 | +10.7 % |
lru.entries |
0.020361 ms | 0.018461 ms | ‑9.3 % (faster) | 49 114 | 54 167 | +10.3 % |
What the numbers mean
| Observation | Interpretation |
|---|---|
| All three methods are faster in the second run | The average execution time dropped 4‑10 %, translating into a 4‑11 % increase in operations per second. |
lru.values and lru.entries show the biggest gains |
Both are ~9‑10 % quicker. These are the most expensive of the three (they have to allocate and copy whole value/entry arrays), so any JIT warm‑up or reduced GC pressure in the second run yields a noticeable improvement. |
lru.keys improves modestly |
Keys are a lighter operation (just returning an array of stored keys), so the performance delta is smaller – a 4 % speed‑up is still respectable. |
| Std‑dev & max‑time stay similar | The variability (Std Dev) and worst‑case latency are in the same range for both runs, indicating the improvements are consistent rather than an outlier. |
| Implications for real‑world usage | If your application frequently enumerates the cache (e.g., for metrics, debugging, or bulk eviction), you’ll see a modest but measurable reduction in latency—roughly 0.2 ms per 10 k calls for keys and about 2 ms per 10 k calls for values/entries. In a high‑throughput service that performs many such enumerations per second, this can translate into a few percent overall CPU savings. |
Bottom line
lru.keys– 4 % faster, +4 % more ops/sec.lru.values– ~10 % faster, +11 % more ops/sec.lru.entries– ~10 % faster, +10 % more ops/sec.
The second benchmark run demonstrates a clear performance advantage for the three enumeration‑type methods, with the greatest benefit seen on the heavier values and entries calls. If your workload relies heavily on pulling full key/value lists from the LRU cache, you can expect a noticeable latency reduction and higher throughput in the second run.
avoidwork
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thanks!
|
|
that's the 🔬 Node.js Performance API Benchmarks
======================================
Node.js version: v24.13.0
Platform: darwin arm64
Date: 2026-01-14T15:34:53.784Z
🔬 LRU Performance Benchmarks
==============================
(Using CustomTimer for high-resolution function timing)
Running operations...
Phase 1: Initial cache population
Phase 2: Mixed operations
Phase 3: Cache eviction stress test
Phase 4: Clear operations
Phase 5: Additional API method benchmarks
⏱️ Performance Results
========================
┌─────────┬────────────────────────────────┬────────────┬────────────┬────────────┬────────────┬─────────────┬────────────┬──────────┐
│ (index) │ Operation │ Iterations │ Avg (ms) │ Min (ms) │ Max (ms) │ Median (ms) │ Std Dev │ Ops/sec │
├─────────┼────────────────────────────────┼────────────┼────────────┼────────────┼────────────┼─────────────┼────────────┼──────────┤
│ 0 │ 'lru.set (initial population)' │ 10000 │ '0.000181' │ '0.000041' │ '0.152792' │ '0.000125' │ '0.001954' │ 5539516 │
│ 1 │ 'lru.get' │ 10000 │ '0.000129' │ '0.000041' │ '0.093958' │ '0.000084' │ '0.001240' │ 7730305 │
│ 2 │ 'lru.set' │ 10000 │ '0.000108' │ '0.000041' │ '0.034500' │ '0.000084' │ '0.000489' │ 9267755 │
│ 3 │ 'lru.has' │ 10000 │ '0.000085' │ '0.000041' │ '0.031541' │ '0.000083' │ '0.000459' │ 11830665 │
│ 4 │ 'lru.keys' │ 10000 │ '0.002190' │ '0.001750' │ '0.061792' │ '0.001917' │ '0.002292' │ 456648 │
│ 5 │ 'lru.values' │ 10000 │ '0.016835' │ '0.014625' │ '0.087250' │ '0.015833' │ '0.003299' │ 59399 │
│ 6 │ 'lru.entries' │ 10000 │ '0.019046' │ '0.016208' │ '0.221500' │ '0.017750' │ '0.005037' │ 52505 │
│ 7 │ 'lru.delete' │ 10000 │ '0.000085' │ '0.000041' │ '0.039333' │ '0.000083' │ '0.000474' │ 11757748 │
│ 8 │ 'lru.set (eviction stress)' │ 10000 │ '0.000248' │ '0.000125' │ '0.077791' │ '0.000209' │ '0.000835' │ 4027318 │
│ 9 │ 'lru.clear' │ 10000 │ '0.000104' │ '0.000041' │ '0.167041' │ '0.000083' │ '0.001679' │ 9638220 │
│ 10 │ 'lru.setWithEvicted' │ 10000 │ '0.000217' │ '0.000083' │ '0.168291' │ '0.000167' │ '0.001942' │ 4598124 │
│ 11 │ 'lru.expiresAt' │ 10000 │ '0.000049' │ '0.000000' │ '0.009584' │ '0.000042' │ '0.000139' │ 20555238 │
└─────────┴────────────────────────────────┴────────────┴────────────┴────────────┴────────────┴─────────────┴────────────┴──────────┘
📈 Scalability Test
===================
Testing cache size: 100
Testing cache size: 500
Testing cache size: 1000
Testing cache size: 5000
Testing cache size: 10000
┌─────────┬───────┬────────────────┬───────────────────┬───────────────────┬───────────────────┐
│ (index) │ Size │ Set Total (ms) │ Set Per Item (ms) │ Get 1K Items (ms) │ Get Per Item (ms) │
├─────────┼───────┼────────────────┼───────────────────┼───────────────────┼───────────────────┤
│ 0 │ 100 │ '0.03' │ '0.0003' │ '0.13' │ '0.0001' │
│ 1 │ 500 │ '0.08' │ '0.0002' │ '0.07' │ '0.0001' │
│ 2 │ 1000 │ '0.15' │ '0.0002' │ '0.07' │ '0.0001' │
│ 3 │ 5000 │ '0.69' │ '0.0001' │ '0.07' │ '0.0001' │
│ 4 │ 10000 │ '1.22' │ '0.0001' │ '0.10' │ '0.0001' │
└─────────┴───────┴────────────────┴───────────────────┴───────────────────┴───────────────────┘
✅ Performance tests completed!
📋 Notes:
- Benchmarks: High-resolution timing with statistical analysis using CustomTimer (based on performance.now())
- Scalability Test: Shows how performance scales with cache size |
|
this is |
Uh oh!
There was an error while loading. Please reload this page.