Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 7 additions & 6 deletions content/incompleteness/arithmetization-syntax/proofs-in-nd.tex
Original file line number Diff line number Diff line change
Expand Up @@ -30,9 +30,10 @@
is $\tuple{0, \Gn{!A}, n}$. The number~$n$ is~$0$ if it is an
!!{undischarged} assumption, and the numerical label otherwise.
\item
If $\delta$ ends in an inference with one, two, or three premises,
If $\delta$ ends in an inference with zero, one, two, or three premises,
then $\Gn{\delta}$ is
\begin{align*}
& \tuple{0, \Gn{!A}, n, k}, \\
& \tuple{1, \Gn{\delta_1}, \Gn{!A}, n, k}, \\
& \tuple{2, \Gn{\delta_1}, \Gn{\delta_2}, \Gn{!A}, n, k}, \text{ or}\\
& \tuple{3, \Gn{\delta_1}, \Gn{\delta_2}, \Gn{\delta_3}, \Gn{!A}, n,
Expand Down Expand Up @@ -175,12 +176,12 @@
\concat \fn{EndFmla}((d)_2) \concat \Gn{)}.
\end{multline*}

Another simple example is the $\Intro\eq$ rule. Here the premise is
an empty !!{derivation}, i.e., $(d)_1 = 0$, and no discharge label,
Another simple example is the $\Intro\eq$ rule. This has no premises,
so $(d)_0 = 0$, like assumptions. It also has no discharge label,
i.e., $n=0$. However, $!A$ must be of the form $\eq[t][t]$, for a
closed term~$t$. Here, a primitive recursive definition is
\begin{multline*}
(d)_0 = 1 \land (d)_1 = 0 \land \fn{DischargeLabel}(d) = 0 \land {}\\
(d)_0 = 0 \land \fn{DischargeLabel}(d) = 0 \land {}\\
\bexists{t<d}{(\fn{ClTerm}(t) \land
\fn{EndFmla}(d) = {}\\
\Gn{{\eq}(} \concat t \concat \Gn{,} \concat t \concat \Gn{)})}.
Expand Down Expand Up @@ -288,7 +289,7 @@
of~$\delta$. Any sequence of G\"odel numbers of sub-!!{derivation}s
of~$\delta$ is a subsequence of it. Being a subsequence of is a
primitive recursive relation: $\fn{Subseq}(s, s')$ holds iff
$\bforall{i<\len{s}}{\lexists[j<\len{s'}][(s)_i = (s)_j]}$. Being an
$\bforall{i<\len{s}}{\lexists[j<\len{s'}][(s)_i = (s')_j]}$. Being an
immediate sub-!!{derivation} is as well: $\fn{Subderiv}(d, d')$ iff
$\bexists{j<(d')_0}{d = (d')_j}$. So we can define
$\fn{OpenAssum}(z, d)$ by
Expand All @@ -297,7 +298,7 @@
\land (s)_0 = d \land {}} \\
\bexists{n<d}{((s)_{\len{s} \tsub 1} = \tuple{0, z, n} \land {}}\\
\bforall{i<(\len{s} \tsub 1)}{(\fn{Subderiv}((s)_{i+1}, (s)_i) \land {}}\\
\fn{DischargeLabel}((s)_{i+1}) \neq n))).
\fn{DischargeLabel}((s)_i) \neq n))).
\end{multline*}
\end{proof}

Expand Down