Skip to content

Releases: MeridianAlgo/Python-Packages

v6.1.2 - Public

23 Jan 22:41

Choose a tag to compare

MeridianAlgo

The Complete Quantitative Finance Platform

Python Version
License
PyPI Version
Tests

MeridianAlgo is a comprehensive, institutional-grade Python platform for quantitative finance. It provides a complete suite of tools for algorithmic trading, portfolio optimization, risk management, derivatives pricing, and market microstructure analysis. Built for professional quants, researchers, and trading firms.

Key Highlights:

  • 50+ performance metrics and analytics
  • Event-driven backtesting engine with realistic execution
  • Optimal execution algorithms (VWAP, TWAP, POV, Implementation Shortfall)
  • Market microstructure analysis (order book, VPIN, liquidity metrics)
  • Statistical arbitrage and pairs trading
  • Factor models (Fama-French, APT, custom)
  • Options pricing and Greeks
  • Machine learning integration
  • GPU acceleration support
  • Distributed computing ready

Installation

Standard Installation

pip install meridianalgo

With Optional Dependencies

# Machine learning support (scikit-learn, PyTorch, statsmodels)
pip install meridianalgo[ml]

# Optimization (CVXPY, CVXOPT)
pip install meridianalgo[optimization]

# Volatility modeling (ARCH)
pip install meridianalgo[volatility]

# Alternative data (web scraping, API clients)
pip install meridianalgo[data]

# Distributed computing (Ray, Dask)
pip install meridianalgo[distributed]

# Everything
pip install meridianalgo[all]

Quick Start

Portfolio Analytics

import meridianalgo as ma
import pandas as pd

# Load returns data
returns = pd.read_csv('returns.csv', index_col=0, parse_dates=True)

# Calculate comprehensive metrics
from meridianalgo.analytics import PerformanceAnalyzer

analyzer = PerformanceAnalyzer(returns)
metrics = analyzer.summary()

print(f"Sharpe Ratio: {metrics['sharpe_ratio']:.2f}")
print(f"Max Drawdown: {metrics['max_drawdown']:.1%}")
print(f"Calmar Ratio: {metrics['calmar_ratio']:.2f}")

Backtesting

from meridianalgo.backtesting import Backtest, SimpleMovingAverageStrategy
import yfinance as yf

# Get data
data = yf.download('AAPL', start='2020-01-01', end='2023-12-31')

# Create and run backtest
strategy = SimpleMovingAverageStrategy(short_window=20, long_window=50)
backtest = Backtest(data, strategy, initial_capital=100000)
results = backtest.run()

print(f"Total Return: {results['total_return']:.1%}")
print(f"Sharpe Ratio: {results['sharpe_ratio']:.2f}")

Execution Algorithms

from meridianalgo.quant.execution_algorithms import VWAP, TWAP, POV

# VWAP execution
vwap = VWAP(total_quantity=100000, start_time='09:30', end_time='16:00')
schedule = vwap.calculate_schedule(historical_volume)

# TWAP execution
twap = TWAP(total_quantity=100000, duration_minutes=480, slice_interval_minutes=5)
for i in range(twap.n_slices):
    execution = twap.execute_slice(market_price=150.0, available_liquidity=500000)
    print(f"Execute {execution['quantity']} shares at {execution['price']}")

# POV execution
pov = POV(total_quantity=100000, target_pov=0.10)
result = pov.execute(market_volume=1000000, market_price=150.0, time_remaining_pct=0.5)

Market Microstructure

from meridianalgo.liquidity import OrderBook, VPIN, MarketImpact

# Order book analysis
ob = OrderBook()
ob.add_bid(price=100.0, quantity=1000)
ob.add_ask(price=100.1, quantity=1000)

print(f"Spread: {ob.spread():.4f}")
print(f"Mid Price: {ob.mid_price():.2f}")
print(f"Depth: {ob.depth(levels=5)}")

# Volume-Synchronized PIN
vpin = VPIN(trades_data)
print(f"Current VPIN: {vpin.current_vpin():.3f}")
print(f"Toxicity Regime: {vpin.toxicity_regime()}")

# Market impact estimation
impact = MarketImpact()
cost = impact.estimate_total_cost(quantity=10000, volatility=0.02, volume=1000000)
print(f"Estimated Impact Cost: {cost:.4f}")

Statistical Arbitrage

from meridianalgo.quant.statistical_arbitrage import PairsTrading, CointegrationAnalyzer

# Pairs trading
pairs = PairsTrading(asset1_prices, asset2_prices)
signals = pairs.generate_signals(z_score_threshold=2.0)

# Cointegration analysis
analyzer = CointegrationAnalyzer(asset1_prices, asset2_prices)
result = analyzer.test_cointegration()
print(f"Cointegration p-value: {result['p_value']:.4f}")
print(f"Is cointegrated: {result['is_cointegrated']}")

Factor Models

from meridianalgo.quant.factor_models import FamaFrenchModel, FactorRiskDecomposition

# Fama-French 3-factor model
ff = FamaFrenchModel(returns, market_excess_returns, smb, hml)
alpha, beta_market, beta_smb, beta_hml = ff.fit()

# Factor risk decomposition
decomp = FactorRiskDecomposition(returns, factors)
risk_contrib = decomp.factor_contribution_to_risk()
print(f"Factor Risk Contributions: {risk_contrib}")

Technical Analysis

from meridianalgo.signals import RSI, MACD, BollingerBands, TechnicalAnalyzer

# Individual indicators
rsi = RSI(prices, period=14)
macd = MACD(prices, fast=12, slow=26, signal=9)
bb = BollingerBands(prices, period=20, std_dev=2)

# Comprehensive technical analysis
analyzer = TechnicalAnalyzer(prices)
signals = analyzer.calculate_all()
summary = analyzer.summary()

Core Modules

Analytics (meridianalgo.analytics)

  • PerformanceAnalyzer: 50+ metrics (Sharpe, Sortino, Calmar, Information Ratio, etc.)
  • RiskAnalyzer: VaR, CVaR, stress testing, scenario analysis
  • DrawdownAnalyzer: Drawdown analysis, underwater plots, recovery metrics
  • TearSheet: Pyfolio-style comprehensive performance reports

Backtesting (meridianalgo.backtesting)

  • Event-driven engine: Realistic market simulation with bid-ask spreads
  • Order management: Market, limit, stop, bracket orders
  • Execution simulation: Market impact, slippage, commission modeling
  • Pre-built strategies: SMA crossover, momentum, mean reversion

Liquidity (meridianalgo.liquidity)

  • OrderBook: Depth analysis, microprice, spread metrics
  • VPIN: Volume-Synchronized Probability of Informed Trading
  • MarketImpact: Linear, square-root, power-law impact models
  • Microstructure: Tick data analysis, volume profiles

Quant (meridianalgo.quant)

  • Execution: VWAP, TWAP, POV, Implementation Shortfall (Almgren-Chriss)
  • Statistical Arbitrage: Pairs trading, cointegration, mean reversion
  • Factor Models: Fama-French, APT, custom factor models
  • High-Frequency: Market making, latency arbitrage, order book dynamics
  • Regime Detection: Hidden Markov Models, structural breaks, volatility regimes

Signals (meridianalgo.signals)

  • Technical Indicators: SMA, EMA, RSI, MACD, Bollinger Bands, ATR, Stochastic, ADX, OBV
  • Signal Generation: Multi-indicator signal generation and evaluation
  • Pattern Recognition: Chart patterns, support/resistance levels

Portfolio (meridianalgo.portfolio)

  • Optimization: Mean-variance, risk parity, Black-Litterman
  • Rebalancing: Calendar, threshold, and drift-based rebalancing
  • Performance Attribution: Brinson-Fachler attribution analysis
  • Risk Management: Position sizing, concentration limits, Greeks hedging

Derivatives (meridianalgo.derivatives)

  • Options Pricing: Black-Scholes, binomial, Monte Carlo
  • Greeks: Delta, gamma, vega, theta, rho calculations
  • Volatility Surfaces: Smile, skew, term structure modeling
  • Exotic Options: Barrier, Asian, lookback options

Data (meridianalgo.data)

  • Providers: Yahoo Finance, Polygon, custom data sources
  • Processing: OHLCV normalization, corporate actions adjustment
  • Storage: Efficient time-series storage and retrieval
  • Streaming: Real-time data feed integration

Performance

MeridianAlgo is optimized for performance:

  • Vectorized operations: NumPy/Pandas for fast computation
  • GPU acceleration: CUDA support for matrix operations
  • Distributed computing: Ray/Dask integration for parallel processing
  • Efficient memory: Optimized data structures for large datasets

Benchmark results on typical workloads:

  • Portfolio analytics: 10,000+ assets in <1 second
  • Backtesting: 10 years of daily data in <5 seconds
  • Factor model fitting: 1,000+ factors in <10 seconds

Documentation

Full documentation available at: https://meridianalgo.readthedocs.io


Citation

If you use MeridianAlgo in your research, please cite:

@software{meridianalgo2026,
  title = {MeridianAlgo: The Complete Quantitative Finance Platform},
  author = {Meridian Algorithmic Research Team},
  year = {2026},
  version = {6.2.1},
  url = {https://github.com/MeridianAlgo/Python-Packages}
}

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.


License

MeridianAlgo is licensed under the MIT License. See LICENSE for details.


Support


Disclaimer

MeridianAlgo is provided for educational and research purposes. Past p...

Read more

v4.1.0

11 Oct 01:15

Choose a tag to compare

🚀 MeridianAlgo v4.1.0 - Quantum Edition

The Ultimate Quantitative Development Platform

We're excited to announce the release of MeridianAlgo v4.1.0 - Quantum Edition, a major milestone that transforms quantitative finance development in Python. This release delivers institutional-grade capabilities with unprecedented performance and comprehensive functionality.

🎉 What's New in v4.1.0

🌟 Complete Platform Overhaul

  • All 7 Core Modules fully functional and tested
  • Unified API for seamless integration across all features
  • 200+ Technical Indicators including native implementations + TA library integration
  • Production-Ready Codebase with comprehensive error handling

📚 Comprehensive Documentation

  • Massive README Update with 50+ detailed examples
  • Real-World Use Cases from basic analysis to advanced strategies
  • Complete API Coverage with working code examples
  • Professional Documentation suitable for institutional use

🏗️ Core Architecture

  • Modular Design with optional dependencies
  • Graceful Degradation when optional packages unavailable
  • Performance Optimized with intelligent caching
  • Memory Efficient processing for large datasets

🚀 Key Features

📊 Technical Analysis (200+ Indicators)

  • 50+ Native Indicators: RSI, MACD, Bollinger Bands, Stochastic, Williams %R, ADX, Aroon, Parabolic SAR, Ichimoku Cloud
  • 150+ TA Library Integration: Complete integration with the TA library
  • Advanced Pattern Recognition: Candlestick patterns, chart patterns, support/resistance
  • Custom Indicator Framework: Build your own indicators with JIT compilation

🏦 Portfolio Management

  • Modern Portfolio Theory: Efficient frontier, mean-variance optimization
  • Advanced Models: Black-Litterman, Risk Parity, Hierarchical Risk Parity
  • Performance Attribution: Factor analysis, benchmark comparison, tracking error
  • Transaction Cost Analysis: Market impact models, optimal execution algorithms

⚠️ Risk Management

  • Value at Risk (VaR): Historical, Parametric, Monte Carlo methods
  • Expected Shortfall (CVaR): Tail risk analysis with confidence intervals
  • Stress Testing: Historical scenarios, Monte Carlo simulation
  • Real-time Monitoring: Customizable alerts and dashboards

🤖 Machine Learning

  • Feature Engineering: 500+ financial features
  • Advanced Models: LSTM, Transformers, Ensemble methods
  • Time Series Validation: Walk-forward analysis, purged cross-validation
  • Model Deployment: Versioning, A/B testing, performance monitoring

🔄 Backtesting Engine

  • Event-Driven Architecture: Realistic market simulation
  • Order Management: All order types, partial fills, slippage modeling
  • Performance Analytics: 50+ metrics, drawdown analysis
  • Parallel Processing: GPU acceleration support

💰 Fixed Income & Derivatives

  • Bond Pricing: Yield curve construction, duration, convexity
  • Options Pricing: Black-Scholes, binomial trees, Monte Carlo
  • Interest Rate Models: Vasicek, CIR, Hull-White
  • Exotic Derivatives: Barrier options, Asian options, structured products

📦 Installation

# Standard installation
pip install meridianalgo==4.1.0

# With machine learning support
pip install meridianalgo[ml]

# With all optional dependencies
pip install meridianalgo[all]