Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
# pylint: disable=line-too-long,useless-suppression
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
DESCRIPTION:
Given an AIProjectClient, this sample demonstrates how to use the synchronous
`openai.evals.*` methods to create, get, and list evaluations and eval runs.

The OpenAI official tutorial is here: https://cookbook.openai.com/examples/evaluation/use-cases/evalsapi_audio_inputs

USAGE:
python sample_evaluations_score_model_grader_with_audio.py

Before running the sample:

pip install "azure-ai-projects>=2.0.0b2" azure-identity python-dotenv

Set these environment variables with your own values:
1) AZURE_AI_PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your
Microsoft Foundry project. It has the form: https://<account_name>.services.ai.azure.com/api/projects/<project_name>.
2) AZURE_AI_MODEL_DEPLOYMENT_NAME - Required. The name of the model deployment to use for evaluation.
3) AZURE_AI_MODEL_DEPLOYMENT_NAME_FOR_AUDIO - Required. The name of the model deployment for audio to use for evaluation, recommend to use "gpt-4o-audio-preview"
"""

import os
import base64

from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
import time
from pprint import pprint
from openai.types.evals.create_eval_completions_run_data_source_param import (
CreateEvalCompletionsRunDataSourceParam,
SourceFileContent,
SourceFileContentContent,
InputMessagesTemplate,
InputMessagesTemplateTemplateEvalItem,
)
from openai.types.responses import EasyInputMessageParam, ResponseInputAudioParam
from openai.types.eval_create_params import DataSourceConfigCustom
from dotenv import load_dotenv


load_dotenv()
file_path = os.path.abspath(__file__)
folder_path = os.path.dirname(file_path)

endpoint = os.environ.get("AZURE_AI_PROJECT_ENDPOINT", "")
model_deployment_name = os.environ.get("AZURE_AI_MODEL_DEPLOYMENT_NAME", "")
model_deployment_name_for_audio = os.environ.get("AZURE_AI_MODEL_DEPLOYMENT_NAME_FOR_AUDIO", "")


def audio_to_base64(audio_path: str) -> str:
"""Read an audio file and return its base64-encoded content."""
with open(audio_path, "rb") as f:
return base64.b64encode(f.read()).decode()


with (
DefaultAzureCredential() as credential,
AIProjectClient(endpoint=endpoint, credential=credential) as project_client,
project_client.get_openai_client() as client,
):

data_source_config = DataSourceConfigCustom(
{
"type": "custom",
"item_schema": {
"type": "object",
"properties": {
"audio_data": {
"type": "string",
"description": "Base64-encoded WAV audio data."
},
"expected": {
"type": "string",
"description": "The expected content in the audio."
}
},
"required": [
"audio_data",
"expected",
],
},
"include_sample_schema": True,
}
)

testing_criteria = [
{
"type": "score_model",
"name": "score_grader",
"model": model_deployment_name,
"input": [
{
"role": "system",
"content": "You are an audio analyzer. Listen to the audio, return a float score in [0,1] where 1 means the audio has the same meaning as {{item.expected}}.",
},
{
"role": "user",
"content": "{{sample.output_text}}",
}
],
"range": [
0.0,
1.0
],
"pass_threshold": 0.5,
},
]

print("Creating evaluation")
eval_object = client.evals.create(
name="OpenAI graders test",
data_source_config=data_source_config,
testing_criteria=testing_criteria, # type: ignore
)
print(f"Evaluation created (id: {eval_object.id}, name: {eval_object.name})")

print("Get evaluation by Id")
eval_object_response = client.evals.retrieve(eval_object.id)
print("Evaluation Response:")
pprint(eval_object_response)

source_file_content_content = SourceFileContentContent(
item={
"audio_data": audio_to_base64(os.path.join(folder_path, "data_folder/sample_evaluations_score_model_grader_with_audio.wav")),
"expected": "Don't forget a jacket",
},
)
source_file_content = SourceFileContent(
type="file_content",
content=[source_file_content_content],
)
input_messages = InputMessagesTemplate(
type="template",
template=[
EasyInputMessageParam(
role="system",
content="You are an assistant that can analyze audio input. You will be given an audio input to analyze.",
),
InputMessagesTemplateTemplateEvalItem(
role="user",
type="message",
content="Listen to the following audio and convert to text.",
),
InputMessagesTemplateTemplateEvalItem(
role="user",
type="message",
content=ResponseInputAudioParam(
type="input_audio",
input_audio={
"data": "{{item.audio_data}}",
"format": "wav",
}
)
)
],
)

print("Creating Eval Run")
eval_run_object = client.evals.runs.create(
eval_id=eval_object.id,
name="Eval",
metadata={"team": "eval-exp", "scenario": "notifications-v1"},
data_source=CreateEvalCompletionsRunDataSourceParam(
type="completions",
source=source_file_content,
model=model_deployment_name_for_audio,
input_messages=input_messages,
sampling_params={
"temperature": 0.8,
},
)
)
print(f"Eval Run created (id: {eval_run_object.id}, name: {eval_run_object.name})")
pprint(eval_run_object)

print("Get Eval Run by Id")
eval_run_response = client.evals.runs.retrieve(run_id=eval_run_object.id, eval_id=eval_object.id)
print("Eval Run Response:")
pprint(eval_run_response)

while True:
run = client.evals.runs.retrieve(run_id=eval_run_response.id, eval_id=eval_object.id)
if run.status == "completed" or run.status == "failed":
output_items = list(client.evals.runs.output_items.list(run_id=run.id, eval_id=eval_object.id))
pprint(output_items)
print(f"Eval Run Report URL: {run.report_url}")

break
time.sleep(5)
print("Waiting for eval run to complete...")

client.evals.delete(eval_id=eval_object.id)
print("Evaluation deleted")