@@ -774,36 +774,6 @@ def reflectivity_calculation_output_results():
774774 ]
775775 ),
776776 ]
777- results.layerSlds = [
778- [
779- np.array(
780- [
781- [1.954000e01, 4.001499e-06, 3.000000e00],
782- [2.266000e01, -6.586988e-08, 3.000000e00],
783- [8.560000e00, 3.672535e-06, 5.640000e00],
784- [1.712000e01, 5.980000e-06, 5.640000e00],
785- [1.070000e01, 3.100365e-06, 6.014000e00],
786- [1.782000e01, 6.751924e-07, 6.014000e00],
787- [1.782000e01, 6.751924e-07, 6.014000e00],
788- [1.070000e01, 3.100365e-06, 6.014000e00],
789- ],
790- ),
791- ],
792- [
793- np.array(
794- [
795- [1.9540000e01, 3.1114020e-06, 3.0000000e00],
796- [2.2660000e01, -2.6387028e-07, 3.0000000e00],
797- [8.5600000e00, 1.9590700e-06, 5.6400000e00],
798- [1.7120000e01, 2.2100000e-06, 5.6400000e00],
799- [1.0700000e01, 1.7375100e-06, 6.0140000e00],
800- [1.7820000e01, 1.0164400e-08, 6.0140000e00],
801- [1.7820000e01, 1.0164400e-08, 6.0140000e00],
802- [1.0700000e01, 1.7375100e-06, 6.0140000e00],
803- ],
804- ),
805- ],
806- ]
807777 results.sldProfiles = [
808778 [
809779 np.array(
@@ -866,6 +836,36 @@ def reflectivity_calculation_output_results():
866836 ),
867837 ],
868838 ]
839+ results.layers = [
840+ [
841+ np.array(
842+ [
843+ [1.954000e01, 4.001499e-06, 3.000000e00],
844+ [2.266000e01, -6.586988e-08, 3.000000e00],
845+ [8.560000e00, 3.672535e-06, 5.640000e00],
846+ [1.712000e01, 5.980000e-06, 5.640000e00],
847+ [1.070000e01, 3.100365e-06, 6.014000e00],
848+ [1.782000e01, 6.751924e-07, 6.014000e00],
849+ [1.782000e01, 6.751924e-07, 6.014000e00],
850+ [1.070000e01, 3.100365e-06, 6.014000e00],
851+ ],
852+ ),
853+ ],
854+ [
855+ np.array(
856+ [
857+ [1.9540000e01, 3.1114020e-06, 3.0000000e00],
858+ [2.2660000e01, -2.6387028e-07, 3.0000000e00],
859+ [8.5600000e00, 1.9590700e-06, 5.6400000e00],
860+ [1.7120000e01, 2.2100000e-06, 5.6400000e00],
861+ [1.0700000e01, 1.7375100e-06, 6.0140000e00],
862+ [1.7820000e01, 1.0164400e-08, 6.0140000e00],
863+ [1.7820000e01, 1.0164400e-08, 6.0140000e00],
864+ [1.0700000e01, 1.7375100e-06, 6.0140000e00],
865+ ],
866+ ),
867+ ],
868+ ]
869869 results.resampledLayers = [[np.array([[0.0, 0.0, 0.0]])], [np.array([[0.0, 0.0, 0.0]])]]
870870 results.calculationResults = RATapi.rat_core.Calculation()
871871 results.calculationResults.chiValues = np.array([202.83057377, 1641.4024969])
@@ -1430,36 +1430,6 @@ def reflectivity_calculation_results():
14301430 ]
14311431 ),
14321432 ],
1433- layerSlds=[
1434- [
1435- np.array(
1436- [
1437- [1.954000e01, 4.001499e-06, 3.000000e00],
1438- [2.266000e01, -6.586988e-08, 3.000000e00],
1439- [8.560000e00, 3.672535e-06, 5.640000e00],
1440- [1.712000e01, 5.980000e-06, 5.640000e00],
1441- [1.070000e01, 3.100365e-06, 6.014000e00],
1442- [1.782000e01, 6.751924e-07, 6.014000e00],
1443- [1.782000e01, 6.751924e-07, 6.014000e00],
1444- [1.070000e01, 3.100365e-06, 6.014000e00],
1445- ],
1446- ),
1447- ],
1448- [
1449- np.array(
1450- [
1451- [1.9540000e01, 3.1114020e-06, 3.0000000e00],
1452- [2.2660000e01, -2.6387028e-07, 3.0000000e00],
1453- [8.5600000e00, 1.9590700e-06, 5.6400000e00],
1454- [1.7120000e01, 2.2100000e-06, 5.6400000e00],
1455- [1.0700000e01, 1.7375100e-06, 6.0140000e00],
1456- [1.7820000e01, 1.0164400e-08, 6.0140000e00],
1457- [1.7820000e01, 1.0164400e-08, 6.0140000e00],
1458- [1.0700000e01, 1.7375100e-06, 6.0140000e00],
1459- ],
1460- ),
1461- ],
1462- ],
14631433 sldProfiles=[
14641434 [
14651435 np.array(
@@ -1522,6 +1492,36 @@ def reflectivity_calculation_results():
15221492 ),
15231493 ],
15241494 ],
1495+ layers=[
1496+ [
1497+ np.array(
1498+ [
1499+ [1.954000e01, 4.001499e-06, 3.000000e00],
1500+ [2.266000e01, -6.586988e-08, 3.000000e00],
1501+ [8.560000e00, 3.672535e-06, 5.640000e00],
1502+ [1.712000e01, 5.980000e-06, 5.640000e00],
1503+ [1.070000e01, 3.100365e-06, 6.014000e00],
1504+ [1.782000e01, 6.751924e-07, 6.014000e00],
1505+ [1.782000e01, 6.751924e-07, 6.014000e00],
1506+ [1.070000e01, 3.100365e-06, 6.014000e00],
1507+ ],
1508+ ),
1509+ ],
1510+ [
1511+ np.array(
1512+ [
1513+ [1.9540000e01, 3.1114020e-06, 3.0000000e00],
1514+ [2.2660000e01, -2.6387028e-07, 3.0000000e00],
1515+ [8.5600000e00, 1.9590700e-06, 5.6400000e00],
1516+ [1.7120000e01, 2.2100000e-06, 5.6400000e00],
1517+ [1.0700000e01, 1.7375100e-06, 6.0140000e00],
1518+ [1.7820000e01, 1.0164400e-08, 6.0140000e00],
1519+ [1.7820000e01, 1.0164400e-08, 6.0140000e00],
1520+ [1.0700000e01, 1.7375100e-06, 6.0140000e00],
1521+ ],
1522+ ),
1523+ ],
1524+ ],
15251525 resampledLayers=[[np.array([[0.0, 0.0, 0.0]])], [np.array([[0.0, 0.0, 0.0]])]],
15261526 calculationResults=RATapi.outputs.CalculationResults(
15271527 chiValues=np.array([202.83057377, 1641.4024969]),
@@ -2091,36 +2091,6 @@ def dream_output_results():
20912091 ]
20922092 ),
20932093 ]
2094- results.layerSlds = [
2095- [
2096- np.array(
2097- [
2098- [3.15755349e01, 3.35278238e-06, 4.16625659e00],
2099- [3.61791464e01, 7.68327921e-07, 4.16625659e00],
2100- [1.00488530e01, 2.06044530e-06, 2.78042232e01],
2101- [1.08043784e01, 3.29384190e-06, 2.78042232e01],
2102- [2.42251646e01, 2.35556998e-06, 1.55593097e01],
2103- [1.49022278e01, 7.42138004e-07, 1.55593097e01],
2104- [1.49022278e01, 7.42138004e-07, 1.55593097e01],
2105- [2.42251646e01, 2.35556998e-06, 1.55593097e01],
2106- ],
2107- ),
2108- ],
2109- [
2110- np.array(
2111- [
2112- [3.15755349e01, 4.11636356e-06, 4.16625659e00],
2113- [3.61791464e01, 1.39268494e-06, 4.16625659e00],
2114- [1.00488530e01, 2.45715680e-06, 2.78042232e01],
2115- [1.08043784e01, 5.26668495e-06, 2.78042232e01],
2116- [2.42251646e01, 3.31348777e-06, 1.55593097e01],
2117- [1.49022278e01, 1.37428245e-06, 1.55593097e01],
2118- [1.49022278e01, 1.37428245e-06, 1.55593097e01],
2119- [2.42251646e01, 3.31348777e-06, 1.55593097e01],
2120- ],
2121- ),
2122- ],
2123- ]
21242094 results.sldProfiles = [
21252095 [
21262096 np.array(
@@ -2191,6 +2161,36 @@ def dream_output_results():
21912161 ),
21922162 ],
21932163 ]
2164+ results.layers = [
2165+ [
2166+ np.array(
2167+ [
2168+ [3.15755349e01, 3.35278238e-06, 4.16625659e00],
2169+ [3.61791464e01, 7.68327921e-07, 4.16625659e00],
2170+ [1.00488530e01, 2.06044530e-06, 2.78042232e01],
2171+ [1.08043784e01, 3.29384190e-06, 2.78042232e01],
2172+ [2.42251646e01, 2.35556998e-06, 1.55593097e01],
2173+ [1.49022278e01, 7.42138004e-07, 1.55593097e01],
2174+ [1.49022278e01, 7.42138004e-07, 1.55593097e01],
2175+ [2.42251646e01, 2.35556998e-06, 1.55593097e01],
2176+ ],
2177+ ),
2178+ ],
2179+ [
2180+ np.array(
2181+ [
2182+ [3.15755349e01, 4.11636356e-06, 4.16625659e00],
2183+ [3.61791464e01, 1.39268494e-06, 4.16625659e00],
2184+ [1.00488530e01, 2.45715680e-06, 2.78042232e01],
2185+ [1.08043784e01, 5.26668495e-06, 2.78042232e01],
2186+ [2.42251646e01, 3.31348777e-06, 1.55593097e01],
2187+ [1.49022278e01, 1.37428245e-06, 1.55593097e01],
2188+ [1.49022278e01, 1.37428245e-06, 1.55593097e01],
2189+ [2.42251646e01, 3.31348777e-06, 1.55593097e01],
2190+ ],
2191+ ),
2192+ ],
2193+ ]
21942194 results.resampledLayers = [[np.array([[0.0, 0.0, 0.0]])], [np.array([[0.0, 0.0, 0.0]])]]
21952195 results.calculationResults = RATapi.rat_core.Calculation()
21962196 results.calculationResults.chiValues = (np.array([4.6077885, 7.00028098]),)
@@ -4576,36 +4576,6 @@ def dream_results():
45764576 ]
45774577 ),
45784578 ],
4579- layerSlds=[
4580- [
4581- np.array(
4582- [
4583- [3.15755349e01, 3.35278238e-06, 4.16625659e00],
4584- [3.61791464e01, 7.68327921e-07, 4.16625659e00],
4585- [1.00488530e01, 2.06044530e-06, 2.78042232e01],
4586- [1.08043784e01, 3.29384190e-06, 2.78042232e01],
4587- [2.42251646e01, 2.35556998e-06, 1.55593097e01],
4588- [1.49022278e01, 7.42138004e-07, 1.55593097e01],
4589- [1.49022278e01, 7.42138004e-07, 1.55593097e01],
4590- [2.42251646e01, 2.35556998e-06, 1.55593097e01],
4591- ],
4592- ),
4593- ],
4594- [
4595- np.array(
4596- [
4597- [3.15755349e01, 4.11636356e-06, 4.16625659e00],
4598- [3.61791464e01, 1.39268494e-06, 4.16625659e00],
4599- [1.00488530e01, 2.45715680e-06, 2.78042232e01],
4600- [1.08043784e01, 5.26668495e-06, 2.78042232e01],
4601- [2.42251646e01, 3.31348777e-06, 1.55593097e01],
4602- [1.49022278e01, 1.37428245e-06, 1.55593097e01],
4603- [1.49022278e01, 1.37428245e-06, 1.55593097e01],
4604- [2.42251646e01, 3.31348777e-06, 1.55593097e01],
4605- ],
4606- ),
4607- ],
4608- ],
46094579 sldProfiles=[
46104580 [
46114581 np.array(
@@ -4676,6 +4646,36 @@ def dream_results():
46764646 ),
46774647 ],
46784648 ],
4649+ layers=[
4650+ [
4651+ np.array(
4652+ [
4653+ [3.15755349e01, 3.35278238e-06, 4.16625659e00],
4654+ [3.61791464e01, 7.68327921e-07, 4.16625659e00],
4655+ [1.00488530e01, 2.06044530e-06, 2.78042232e01],
4656+ [1.08043784e01, 3.29384190e-06, 2.78042232e01],
4657+ [2.42251646e01, 2.35556998e-06, 1.55593097e01],
4658+ [1.49022278e01, 7.42138004e-07, 1.55593097e01],
4659+ [1.49022278e01, 7.42138004e-07, 1.55593097e01],
4660+ [2.42251646e01, 2.35556998e-06, 1.55593097e01],
4661+ ],
4662+ ),
4663+ ],
4664+ [
4665+ np.array(
4666+ [
4667+ [3.15755349e01, 4.11636356e-06, 4.16625659e00],
4668+ [3.61791464e01, 1.39268494e-06, 4.16625659e00],
4669+ [1.00488530e01, 2.45715680e-06, 2.78042232e01],
4670+ [1.08043784e01, 5.26668495e-06, 2.78042232e01],
4671+ [2.42251646e01, 3.31348777e-06, 1.55593097e01],
4672+ [1.49022278e01, 1.37428245e-06, 1.55593097e01],
4673+ [1.49022278e01, 1.37428245e-06, 1.55593097e01],
4674+ [2.42251646e01, 3.31348777e-06, 1.55593097e01],
4675+ ],
4676+ ),
4677+ ],
4678+ ],
46794679 resampledLayers=[[np.array([[0.0, 0.0, 0.0]])], [np.array([[0.0, 0.0, 0.0]])]],
46804680 calculationResults=RATapi.outputs.CalculationResults(
46814681 chiValues=np.array([4.6077885, 7.00028098]),
0 commit comments