diff --git a/docs/source/index.rst b/docs/source/index.rst
index 596dde9..6b86140 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -49,6 +49,7 @@ To get started with PEtab GUI, check out the :doc:`installation instructions `_ is a Python-based Parameter EStimation TOolbox that provides a unified interface for parameter estimation, uncertainty quantification, and model selection for systems biology models.
+
+**Key features:**
+
+* Multiple optimization algorithms (local and global)
+* Multi-start optimization for local optimizers
+* Profile likelihood and sampling for uncertainty analysis
+* Native PEtab support
+
+**PEtab example notebooks in pyPESTO**
+
+* `Model import using the PEtab format `_ for a basic optimization of a PEtab problem using pyPESTO.
+* `AMICI in pyPESTO `_ for a complete workflow of parameter estimation of a PEtab problem using AMICI as simulation engine within pyPESTO.
+
+**Minimal working example:**
+
+.. code-block:: python
+
+ import pypesto
+ import pypesto.petab
+
+ # Load PEtab problem
+ petab_problem = pypesto.petab.PetabImporter.from_yaml("path_to_your_model.yaml")
+ problem = petab_problem.create_problem()
+
+ # Configure optimizer (100 multi-starts)
+ optimizer = pypesto.optimize.ScipyOptimizer(method='L-BFGS-B')
+ n_starts = 100
+
+ # Run optimization
+ result = pypesto.optimize.minimize(
+ problem=problem,
+ optimizer=optimizer,
+ n_starts=n_starts
+ )
+
+ # Retrieve best parameters
+ best_params = result.optimize_result.list[0]['x']
+ print(f"Best parameters: {best_params}")
+ print(f"Best objective value: {result.optimize_result.list[0]['fval']}")
+
+**Next steps:**
+
+* Perform profile likelihood: `pypesto.profile `_
+* Run sampling for uncertainty: `pypesto.sample `_
+* Explore different optimizers and settings in pyPESTO, with many more examples in the `pyPESTO documentation `_.
+
+**Documentation:** https://pypesto.readthedocs.io/
+
+Model Simulation with AMICI
+----------------------------
+
+`AMICI `_ (Advanced Multilanguage Interface to CVODES and IDAS) provides efficient simulation and sensitivity analysis for ordinary differential equation models.
+
+*Disclaimer*: AMICI is currently preparing a release v1.0.0, which will have significant changes to the API. The example below corresponds to the current stable release v0.34.2.
+
+**Key features:**
+
+* C++-based simulation with Python interface
+* Fast sensitivity computation via adjoint method
+* Symbolic preprocessing for optimized code generation
+* Native PEtab support
+
+**Minimal working example:**
+
+.. code-block:: python
+
+
+ import petab
+
+ from amici import runAmiciSimulation
+ from amici.petab.petab_import import import_petab_problem
+ from amici.petab.petab_problem import PetabProblem
+ from amici.petab.simulations import simulate_petab
+ from amici.plotting import plot_state_trajectories
+
+ petab_problem = petab.Problem.from_yaml("path_to_your_model.yaml")
+ amici_model = import_petab_problem(petab_problem, verbose=False)
+ # Simulate for all conditions
+ res = simulate_petab(petab_problem, amici_model)
+ # Visualize trajectory of first condition (indexing starts at 0)
+ plot_state_trajectories(res["rdatas"][0])
+
+**Next steps:**
+
+* Start to play around with parameters (see `this amici example `_)
+* Integrate with pyPESTO for advanced optimization features (see above)
+
+**Documentation:** https://amici.readthedocs.io/
+
+Model Simulation with COPASI
+---------------------------------
+
+`COPASI `_ (COmplex PAthway SImulator) is a standalone software with a graphical user interface for modeling and simulation of biochemical networks.
+
+**Key features:**
+
+* Cross-platform GUI application (Windows, macOS, Linux)
+* Advanced simulation possibilities (deterministic, stochastic, steady-state)
+* User friendly creation and adaptation of SBML models, e.g. introducing events
+* Support for parameter estimation and sensitivity analysis
+
+**Installation:**
+
+Download COPASI for your platform from: https://copasi.org/download/
+
+**Documentation:** https://copasi.org/Support/User_Manual/
+
+Parameter Estimation with PEtab.jl
+-----------------------------------
+
+`PEtab.jl `_ is a Julia library for working with PEtab files, offering high-performance parameter estimation with automatic differentiation.
+
+**Key features:**
+
+* High-performance Julia implementation
+* Automatic differentiation for fast gradient computation
+* Support for ODE and SDE models
+* Native integration with Optimization.jl
+
+**Minimal working example:**
+
+.. code-block:: julia
+
+ using PEtab
+
+ # Import PEtab problem from YAML
+ model = PEtabModel("your_model.yaml")
+
+ petab_prob = PEtabODEProblem(model)
+
+ # Parameter estimation
+ using Optim, Plots
+ x0 = get_startguesses(petab_prob, 1)
+ res = calibrate(petab_prob, x0, IPNewton())
+ plot(res, petab_prob; linewidth = 2.0)
+ # Multistart optimization using 50 starts
+ ms_res = calibrate_multistart(petab_prob, IPNewton(), 50)
+ plot(ms_res; plot_type=:waterfall)
+ plot(ms_res, petab_prob; linewidth = 2.0)
+
+**Next steps:**
+
+* Explore different ODE solvers for your problem type
+* Use gradient-based optimizers with automatic differentiation
+* Perform uncertainty quantification with sampling methods
+
+**Documentation:** https://sebapersson.github.io/PEtab.jl/stable/
+
+Parameter Estimation with Data2Dynamics
+----------------------------------------
+
+`Data2Dynamics (D2D) `_ is a MATLAB-based framework for comprehensive modeling of biological processes with focus on ordinary differential equations.
+
+**Key features:**
+
+* MATLAB-based framework with PEtab support
+* Profile likelihood-based uncertainty analysis
+* Model identifiability analysis
+* PEtab import functionality
+
+**Minimal working example:**
+
+.. code-block:: matlab
+
+ % Setup Data2Dynamics environment
+ arInit;
+
+ % Import PEtab problem
+ arImportPEtab({'my_model','my_observables','my_measurements','my_conditions','my_parameters'}) % note the order of input arguments!
+
+ % Multi-start optimization (100 starts)
+ arFitLHS(100);
+
+ % Display results
+ arPlotFits;
+ arPlot;
+ arPrint;
+
+**Documentation:** https://github.com/Data2Dynamics/d2d/wiki
+
+Contribute to the Benchmark Collection
+---------------------------------------
+
+Before diving into parameter estimation, consider contributing your PEtab problem to the community! The `PEtab Benchmark Collection `_ is a curated repository of parameter estimation problems that helps:
+
+* **Validate** your PEtab problem by ensuring it works with multiple tools
+* **Enable reproducibility** by providing a permanent reference for your model
+* **Facilitate method comparison** by allowing others to test algorithms on your problem
+* **Support the community** by expanding the available benchmark suite
+
+**How to contribute:**
+
+See their `How to Contribute `_, and for a complete checklist see the
+`pull request template `_.
+
+Additional Resources
+--------------------
+
+**PEtab Ecosystem:**
+
+* `PEtab Format Specification `_ - Complete PEtab documentation
+* `PEtab Select `_ - Model selection extension
+
+**Model Repositories:**
+
+* `Benchmark Collection `_ - Curated PEtab problems
+* `BioModels `_ - Database of published SBML models
+
+**Getting Help:**
+
+* PEtab-GUI Issues: https://github.com/PEtab-dev/PEtab-GUI/issues
+* PEtab Issues: https://github.com/PEtab-dev/PEtab/issues
+* PEtab Discussion: https://github.com/PEtab-dev/PEtab/discussions
+* Systems Biology Community: https://groups.google.com/g/sbml-discuss