diff --git a/content/incompleteness/arithmetization-syntax/proofs-in-nd.tex b/content/incompleteness/arithmetization-syntax/proofs-in-nd.tex index 88dae9a7..f2681674 100644 --- a/content/incompleteness/arithmetization-syntax/proofs-in-nd.tex +++ b/content/incompleteness/arithmetization-syntax/proofs-in-nd.tex @@ -30,9 +30,10 @@ is $\tuple{0, \Gn{!A}, n}$. The number~$n$ is~$0$ if it is an !!{undischarged} assumption, and the numerical label otherwise. \item - If $\delta$ ends in an inference with one, two, or three premises, + If $\delta$ ends in an inference with zero, one, two, or three premises, then $\Gn{\delta}$ is \begin{align*} + & \tuple{0, \Gn{!A}, n, k}, \\ & \tuple{1, \Gn{\delta_1}, \Gn{!A}, n, k}, \\ & \tuple{2, \Gn{\delta_1}, \Gn{\delta_2}, \Gn{!A}, n, k}, \text{ or}\\ & \tuple{3, \Gn{\delta_1}, \Gn{\delta_2}, \Gn{\delta_3}, \Gn{!A}, n, @@ -175,12 +176,12 @@ \concat \fn{EndFmla}((d)_2) \concat \Gn{)}. \end{multline*} - Another simple example is the $\Intro\eq$ rule. Here the premise is - an empty !!{derivation}, i.e., $(d)_1 = 0$, and no discharge label, + Another simple example is the $\Intro\eq$ rule. This has no premises, + so $(d)_0 = 0$, like assumptions. It also has no discharge label, i.e., $n=0$. However, $!A$ must be of the form $\eq[t][t]$, for a closed term~$t$. Here, a primitive recursive definition is \begin{multline*} - (d)_0 = 1 \land (d)_1 = 0 \land \fn{DischargeLabel}(d) = 0 \land {}\\ + (d)_0 = 0 \land \fn{DischargeLabel}(d) = 0 \land {}\\ \bexists{t