diff --git a/03_04/03_04 General Cleaning Techniques [Begin].ipynb b/03_04/03_04 General Cleaning Techniques [Begin].ipynb
new file mode 100644
index 0000000..57e1448
--- /dev/null
+++ b/03_04/03_04 General Cleaning Techniques [Begin].ipynb
@@ -0,0 +1,520 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Credit Card Retention Analysis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "dce2d54d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import numpy as np\n",
+ "import plotly.graph_objs as go\n",
+ "from plotly.offline import iplot\n",
+ "sns.set_theme()\n",
+ "pd.options.display.max_columns = 999"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "e1d972af",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = pd.read_csv('../data/BankChurners_v2.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dc713314",
+ "metadata": {},
+ "source": [
+ "***"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "26e113b3",
+ "metadata": {},
+ "source": [
+ "## General Cleaning Techniques"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c9172797",
+ "metadata": {},
+ "source": [
+ "### Checking for Duplicates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "6e0a6169",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(10127, 23)"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "6c005b1e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " CLIENTNUM | \n",
+ " Attrition_Flag | \n",
+ " Customer_Age | \n",
+ " Gender | \n",
+ " Dependent_count | \n",
+ " Education_Level | \n",
+ " Marital_Status | \n",
+ " Income_Category | \n",
+ " Card_Category | \n",
+ " Months_on_book | \n",
+ " Total_Relationship_Count | \n",
+ " Months_Inactive_12_mon | \n",
+ " Contacts_Count_12_mon | \n",
+ " Credit_Limit | \n",
+ " Total_Revolving_Bal | \n",
+ " Avg_Open_To_Buy | \n",
+ " Total_Amt_Chng_Q4_Q1 | \n",
+ " Total_Trans_Amt | \n",
+ " Total_Trans_Ct | \n",
+ " Total_Ct_Chng_Q4_Q1 | \n",
+ " Avg_Utilization_Ratio | \n",
+ " Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1 | \n",
+ " Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 90032 | \n",
+ " Existing Customer | \n",
+ " 45 | \n",
+ " M | \n",
+ " 3 | \n",
+ " High School | \n",
+ " Married | \n",
+ " $60K - $80K | \n",
+ " Blue | \n",
+ " 39 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 12691.0 | \n",
+ " 777 | \n",
+ " 11914.0 | \n",
+ " 1.335 | \n",
+ " 1144 | \n",
+ " 42 | \n",
+ " 1.625 | \n",
+ " 0.061 | \n",
+ " 0.000093 | \n",
+ " 0.99991 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 90033 | \n",
+ " Existing Customer | \n",
+ " 49 | \n",
+ " F | \n",
+ " 5 | \n",
+ " Graduate | \n",
+ " Single | \n",
+ " Less than $40K | \n",
+ " Blue | \n",
+ " 44 | \n",
+ " 6 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 8256.0 | \n",
+ " 864 | \n",
+ " 7392.0 | \n",
+ " 1.541 | \n",
+ " 1291 | \n",
+ " 33 | \n",
+ " 3.714 | \n",
+ " 0.105 | \n",
+ " 0.000057 | \n",
+ " 0.99994 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 90034 | \n",
+ " Existing Customer | \n",
+ " 51 | \n",
+ " M | \n",
+ " 3 | \n",
+ " Graduate | \n",
+ " Married | \n",
+ " $80K - $120K | \n",
+ " Blue | \n",
+ " 36 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3418.0 | \n",
+ " 0 | \n",
+ " 3418.0 | \n",
+ " 2.594 | \n",
+ " 1887 | \n",
+ " 20 | \n",
+ " 2.333 | \n",
+ " 0.000 | \n",
+ " 0.000021 | \n",
+ " 0.99998 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 90035 | \n",
+ " Existing Customer | \n",
+ " 40 | \n",
+ " F | \n",
+ " 4 | \n",
+ " High School | \n",
+ " NaN | \n",
+ " Less than $40K | \n",
+ " Blue | \n",
+ " 34 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 3313.0 | \n",
+ " 2517 | \n",
+ " 796.0 | \n",
+ " 1.405 | \n",
+ " 1171 | \n",
+ " 20 | \n",
+ " 2.333 | \n",
+ " 0.760 | \n",
+ " 0.000134 | \n",
+ " 0.99987 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 90036 | \n",
+ " Existing Customer | \n",
+ " 40 | \n",
+ " M | \n",
+ " 3 | \n",
+ " Uneducated | \n",
+ " Married | \n",
+ " $60K - $80K | \n",
+ " Blue | \n",
+ " 21 | \n",
+ " 5 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 4716.0 | \n",
+ " 0 | \n",
+ " 4716.0 | \n",
+ " 2.175 | \n",
+ " 816 | \n",
+ " 28 | \n",
+ " 2.500 | \n",
+ " 0.000 | \n",
+ " 0.000022 | \n",
+ " 0.99998 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " CLIENTNUM Attrition_Flag Customer_Age Gender Dependent_count \\\n",
+ "0 90032 Existing Customer 45 M 3 \n",
+ "1 90033 Existing Customer 49 F 5 \n",
+ "2 90034 Existing Customer 51 M 3 \n",
+ "3 90035 Existing Customer 40 F 4 \n",
+ "4 90036 Existing Customer 40 M 3 \n",
+ "\n",
+ " Education_Level Marital_Status Income_Category Card_Category \\\n",
+ "0 High School Married $60K - $80K Blue \n",
+ "1 Graduate Single Less than $40K Blue \n",
+ "2 Graduate Married $80K - $120K Blue \n",
+ "3 High School NaN Less than $40K Blue \n",
+ "4 Uneducated Married $60K - $80K Blue \n",
+ "\n",
+ " Months_on_book Total_Relationship_Count Months_Inactive_12_mon \\\n",
+ "0 39 5 1 \n",
+ "1 44 6 1 \n",
+ "2 36 4 1 \n",
+ "3 34 3 4 \n",
+ "4 21 5 1 \n",
+ "\n",
+ " Contacts_Count_12_mon Credit_Limit Total_Revolving_Bal Avg_Open_To_Buy \\\n",
+ "0 3 12691.0 777 11914.0 \n",
+ "1 2 8256.0 864 7392.0 \n",
+ "2 0 3418.0 0 3418.0 \n",
+ "3 1 3313.0 2517 796.0 \n",
+ "4 0 4716.0 0 4716.0 \n",
+ "\n",
+ " Total_Amt_Chng_Q4_Q1 Total_Trans_Amt Total_Trans_Ct Total_Ct_Chng_Q4_Q1 \\\n",
+ "0 1.335 1144 42 1.625 \n",
+ "1 1.541 1291 33 3.714 \n",
+ "2 2.594 1887 20 2.333 \n",
+ "3 1.405 1171 20 2.333 \n",
+ "4 2.175 816 28 2.500 \n",
+ "\n",
+ " Avg_Utilization_Ratio \\\n",
+ "0 0.061 \n",
+ "1 0.105 \n",
+ "2 0.000 \n",
+ "3 0.760 \n",
+ "4 0.000 \n",
+ "\n",
+ " Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1 \\\n",
+ "0 0.000093 \n",
+ "1 0.000057 \n",
+ "2 0.000021 \n",
+ "3 0.000134 \n",
+ "4 0.000022 \n",
+ "\n",
+ " Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2 \n",
+ "0 0.99991 \n",
+ "1 0.99994 \n",
+ "2 0.99998 \n",
+ "3 0.99987 \n",
+ "4 0.99998 "
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "76e76248",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "10127"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['CLIENTNUM'].nunique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "428c055d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data.drop_duplicates(inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a08a6dab",
+ "metadata": {},
+ "source": [
+ "No duplicates based on `CLIENTNUM`--good to go! "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9c3bc621",
+ "metadata": {},
+ "source": [
+ "### Subsetting Data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "5ba3e7e4",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['CLIENTNUM', 'Attrition_Flag', 'Customer_Age', 'Gender',\n",
+ " 'Dependent_count', 'Education_Level', 'Marital_Status',\n",
+ " 'Income_Category', 'Card_Category', 'Months_on_book',\n",
+ " 'Total_Relationship_Count', 'Months_Inactive_12_mon',\n",
+ " 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal',\n",
+ " 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt',\n",
+ " 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio',\n",
+ " 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1',\n",
+ " 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "d975075d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = data[['CLIENTNUM', 'Attrition_Flag', 'Customer_Age', 'Gender',\n",
+ " 'Dependent_count', 'Education_Level', 'Marital_Status',\n",
+ " 'Income_Category', 'Card_Category', 'Months_on_book',\n",
+ " 'Total_Relationship_Count', 'Months_Inactive_12_mon',\n",
+ " 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal',\n",
+ " 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt',\n",
+ " 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ffc43c21",
+ "metadata": {},
+ "source": [
+ "### Datatypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "272689b7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "CLIENTNUM int64\n",
+ "Attrition_Flag object\n",
+ "Customer_Age int64\n",
+ "Gender object\n",
+ "Dependent_count int64\n",
+ "Education_Level object\n",
+ "Marital_Status object\n",
+ "Income_Category object\n",
+ "Card_Category object\n",
+ "Months_on_book int64\n",
+ "Total_Relationship_Count int64\n",
+ "Months_Inactive_12_mon int64\n",
+ "Contacts_Count_12_mon int64\n",
+ "Credit_Limit float64\n",
+ "Total_Revolving_Bal int64\n",
+ "Avg_Open_To_Buy float64\n",
+ "Total_Amt_Chng_Q4_Q1 float64\n",
+ "Total_Trans_Amt int64\n",
+ "Total_Trans_Ct int64\n",
+ "Total_Ct_Chng_Q4_Q1 float64\n",
+ "Avg_Utilization_Ratio float64\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.4 (main, Jan 18 2023, 00:26:41) [GCC 9.4.0]"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "3ad933181bd8a04b432d3370b9dc3b0662ad032c4dfaa4e4f1596c548f763858"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/03_04/03_04 General Cleaning Techniques.ipynb b/03_04/03_04 General Cleaning Techniques.ipynb
new file mode 100644
index 0000000..00a8cb8
--- /dev/null
+++ b/03_04/03_04 General Cleaning Techniques.ipynb
@@ -0,0 +1,300 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Credit Card Retention Analysis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import numpy as np\n",
+ "import plotly.graph_objs as go\n",
+ "from plotly.offline import iplot\n",
+ "sns.set()\n",
+ "pd.options.display.max_columns = 999"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 80,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = pd.read_csv('../data/BankChurners_v2.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "***"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## General Cleaning Techniques"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The next important step when working with any dataset, is to perform any necessary cleaning steps. This includes (but is not limited to): 1) converting incorrect variable data types, 2) dropping or imputing missing (`NULL`) values, 3) finding and fixing erroneous values, and 4) handling outliers. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Checking for Duplicates"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A really good high level check to do at the start is to check for duplicates in the dataset. If there is a unique index you can check on like customer or advertiser IDs then that's the best variable to check uniques on by using the `nunique()` method. Else, you can use the `.drop_duplicates()` method."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(10127, 23)"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "10127"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['CLIENTNUM'].nunique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data.drop_duplicates(inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(10127, 23)"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "No duplicates based on `CLIENTNUM`--good to go! "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Subsetting Data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we will look at the column names and see if we want to change column names or subset the data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['CLIENTNUM', 'Attrition_Flag', 'Customer_Age', 'Gender',\n",
+ " 'Dependent_count', 'Education_Level', 'Marital_Status',\n",
+ " 'Income_Category', 'Card_Category', 'Months_on_book',\n",
+ " 'Total_Relationship_Count', 'Months_Inactive_12_mon',\n",
+ " 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal',\n",
+ " 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt',\n",
+ " 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio',\n",
+ " 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1',\n",
+ " 'Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.columns"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We will likely not need the naive bayes classifiers that they've created, so for simplicity, we will subset to remove them with the following code: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = data[['CLIENTNUM', 'Attrition_Flag', 'Customer_Age', 'Gender',\n",
+ " 'Dependent_count', 'Education_Level', 'Marital_Status',\n",
+ " 'Income_Category', 'Card_Category', 'Months_on_book',\n",
+ " 'Total_Relationship_Count', 'Months_Inactive_12_mon',\n",
+ " 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal',\n",
+ " 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt',\n",
+ " 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_Utilization_Ratio',]]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Datatypes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Next, we will take a look at datatypes. To check for datatypes, we will type `df.dtypes` to see how each variable has been read in. Main things to check here are dates and numbers that have been read in as string values and will need to be converted into their respective types in order to work with those variables as intended. Here we see that we have three different datatypes `int64`, `float64` and `object`. The `object` dtype is roughly analogous to str in native Python. You can reference the [user guide](https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes) for pandas dtypes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "CLIENTNUM int64\n",
+ "Attrition_Flag object\n",
+ "Customer_Age int64\n",
+ "Gender object\n",
+ "Dependent_count int64\n",
+ "Education_Level object\n",
+ "Marital_Status object\n",
+ "Income_Category object\n",
+ "Card_Category object\n",
+ "Months_on_book int64\n",
+ "Total_Relationship_Count int64\n",
+ "Months_Inactive_12_mon int64\n",
+ "Contacts_Count_12_mon int64\n",
+ "Credit_Limit float64\n",
+ "Total_Revolving_Bal int64\n",
+ "Avg_Open_To_Buy float64\n",
+ "Total_Amt_Chng_Q4_Q1 float64\n",
+ "Total_Trans_Amt int64\n",
+ "Total_Trans_Ct int64\n",
+ "Total_Ct_Chng_Q4_Q1 float64\n",
+ "Avg_Utilization_Ratio float64\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.dtypes"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.4 (main, Jan 18 2023, 00:26:41) [GCC 9.4.0]"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "3ad933181bd8a04b432d3370b9dc3b0662ad032c4dfaa4e4f1596c548f763858"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}