Skip to content

Commit d7e65d3

Browse files
committed
update week 4
1 parent 7f6e18b commit d7e65d3

File tree

10 files changed

+2798
-4
lines changed

10 files changed

+2798
-4
lines changed

doc/src/week4/Latexslides/add.tex

Lines changed: 434 additions & 0 deletions
Large diffs are not rendered by default.

doc/src/week4/Latexslides/entropies.tex

Lines changed: 645 additions & 0 deletions
Large diffs are not rendered by default.
145 KB
Binary file not shown.
Lines changed: 202 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,202 @@
1+
\documentclass[aspectratio=169]{beamer}
2+
3+
\usetheme{Madrid}
4+
\usecolortheme{default}
5+
\usefonttheme{professionalfonts}
6+
7+
\usepackage{amsmath,amssymb,bm}
8+
\usepackage{braket}
9+
\usepackage{listings}
10+
\usepackage{hyperref}
11+
12+
% ---------------------------
13+
% Listings
14+
% ---------------------------
15+
\lstset{
16+
basicstyle=\ttfamily\small,
17+
columns=fullflexible,
18+
breaklines=true,
19+
frame=single,
20+
showstringspaces=false
21+
}
22+
23+
\title{Exercises week 4}
24+
\subtitle{Exercises with tentative solutions}
25+
\author{Try to do the exercises first without looking at the solutions}
26+
\institute{}
27+
\date{}
28+
29+
\begin{document}
30+
31+
% ==========================================================
32+
\begin{frame}
33+
\titlepage
34+
\end{frame}
35+
36+
37+
\begin{frame}{Exercise 1: Partially entangled two-qubit state}
38+
Consider
39+
\[
40+
\ket{\psi(\theta)}=\cos\theta\,\ket{00}+\sin\theta\,\ket{11},\qquad \theta\in[0,\pi/2].
41+
\]
42+
\textbf{Tasks:}
43+
\begin{enumerate}
44+
\item Compute $\rho_{AB}=\ket{\psi(\theta)}\bra{\psi(\theta)}$.
45+
\item Compute $\rho_A=\Tr_B(\rho_{AB})$.
46+
\item Find eigenvalues of $\rho_A$ and compute
47+
\[
48+
S(\rho_A),\quad S_2(\rho_A),\quad S_\alpha(\rho_A).
49+
\]
50+
\item Identify $\theta$ for which entanglement is maximal.
51+
\end{enumerate}
52+
53+
\medskip
54+
\textbf{Hint:} $\rho_A$ will be diagonal in $\{\ket{0},\ket{1}\}$.
55+
\end{frame}
56+
57+
% ==========================================================
58+
\begin{frame}{Solution 1 (full derivation)}
59+
Start with
60+
\[
61+
\rho_{AB}=\ket{\psi}\bra{\psi}=
62+
\cos^2\theta\,\ket{00}\bra{00}
63+
+\cos\theta\sin\theta\,\ket{00}\bra{11}
64+
+\cos\theta\sin\theta\,\ket{11}\bra{00}
65+
+\sin^2\theta\,\ket{11}\bra{11}.
66+
\]
67+
68+
Use $\Tr_B(\ket{ab}\bra{cd})=\braket{d}{b}\ket{a}\bra{c}$:
69+
\begin{align}
70+
\Tr_B(\ket{00}\bra{00})&=\ket{0}\bra{0},\\
71+
\Tr_B(\ket{00}\bra{11})&=\braket{1}{0}\ket{0}\bra{1}=0,\\
72+
\Tr_B(\ket{11}\bra{00})&=\braket{0}{1}\ket{1}\bra{0}=0,\\
73+
\Tr_B(\ket{11}\bra{11})&=\ket{1}\bra{1}.
74+
\end{align}
75+
76+
Therefore,
77+
\[
78+
\rho_A=\cos^2\theta\,\ket{0}\bra{0}+\sin^2\theta\,\ket{1}\bra{1}
79+
=\begin{pmatrix}
80+
\cos^2\theta & 0\\
81+
0 & \sin^2\theta
82+
\end{pmatrix}.
83+
\]
84+
85+
Eigenvalues: $\lambda_1=\cos^2\theta$, $\lambda_2=\sin^2\theta$.
86+
\end{frame}
87+
88+
% ==========================================================
89+
\begin{frame}{Solution 1: Entropies}
90+
Von Neumann entropy:
91+
\[
92+
S(\rho_A)=-\cos^2\theta\,\log_2(\cos^2\theta)-\sin^2\theta\,\log_2(\sin^2\theta).
93+
\]
94+
95+
Second Rényi entropy:
96+
\[
97+
S_2(\rho_A)=-\log_2\Tr(\rho_A^2)
98+
=-\log_2\left(\cos^4\theta+\sin^4\theta\right).
99+
\]
100+
101+
General Rényi:
102+
\[
103+
S_\alpha(\rho_A)=\frac{1}{1-\alpha}\log_2\left((\cos^2\theta)^\alpha+(\sin^2\theta)^\alpha\right).
104+
\]
105+
106+
\medskip
107+
\textbf{Max entanglement:} at $\theta=\pi/4$,
108+
$\lambda_1=\lambda_2=1/2$ so $S(\rho_A)=1$ bit.
109+
\end{frame}
110+
111+
% ==========================================================
112+
\begin{frame}{Exercise 2: Measurement entropy vs state entropy}
113+
Let the single-qubit state be
114+
\[
115+
\rho = p\ket{0}\bra{0}+(1-p)\ket{1}\bra{1},\qquad p\in[0,1].
116+
\]
117+
118+
\textbf{Tasks:}
119+
\begin{enumerate}
120+
\item Compute $S(\rho)$.
121+
\item Compute measurement entropy $H_{\text{meas}}$ for measuring in the $Z$ basis.
122+
\item Compute $H_{\text{meas}}$ for measuring in the $X$ basis.
123+
\end{enumerate}
124+
125+
\medskip
126+
\textbf{Key point:} $S(\rho)$ is basis-independent, while $H_{\text{meas}}$ depends on the measurement.
127+
\end{frame}
128+
129+
% ==========================================================
130+
\begin{frame}{Solution 2: $Z$ and $X$ measurements}
131+
Since $\rho$ is diagonal with eigenvalues $(p,1-p)$:
132+
\[
133+
S(\rho)=-p\log_2 p-(1-p)\log_2(1-p).
134+
\]
135+
136+
\medskip
137+
\textbf{$Z$ basis measurement:}
138+
\[
139+
p(0)=p,\quad p(1)=1-p
140+
\Rightarrow
141+
H_Z=-p\log_2 p-(1-p)\log_2(1-p)=S(\rho).
142+
\]
143+
144+
\medskip
145+
\textbf{$X$ basis measurement:}
146+
$\ket{\pm}=(\ket{0}\pm\ket{1})/\sqrt{2}$, with projectors $\Pi_\pm=\ket{\pm}\bra{\pm}$.
147+
Then
148+
\[
149+
p(\pm)=\Tr(\rho\,\Pi_\pm)=\frac{1}{2},
150+
\]
151+
so
152+
\[
153+
H_X=1,
154+
\]
155+
independent of $p$.
156+
157+
\medskip
158+
Thus generally $H_{\text{meas}}\ge S(\rho)$, with equality in eigenbasis of $\rho$.
159+
\end{frame}
160+
161+
% ==========================================================
162+
\begin{frame}{Exercise 3: Mutual information for a classical mixture}
163+
Consider a two-qubit mixed state
164+
\[
165+
\rho_{AB}= \frac{1}{2}\ket{00}\bra{00}+\frac{1}{2}\ket{11}\bra{11}.
166+
\]
167+
168+
\textbf{Tasks:}
169+
\begin{enumerate}
170+
\item Compute $\rho_A,\rho_B$.
171+
\item Compute $S(\rho_{AB})$, $S(\rho_A)$, $S(\rho_B)$.
172+
\item Compute $I(A\!:\!B)=S(\rho_A)+S(\rho_B)-S(\rho_{AB})$.
173+
\item Compare to a Bell state, where $I(A\!:\!B)=2$.
174+
\end{enumerate}
175+
\end{frame}
176+
177+
% ==========================================================
178+
\begin{frame}{Solution 3: Classical vs quantum correlations}
179+
Compute reduced states:
180+
\[
181+
\rho_A=\rho_B=\frac{I_2}{2}\quad\Rightarrow\quad S(\rho_A)=S(\rho_B)=1.
182+
\]
183+
184+
The global state has eigenvalues $\{1/2,1/2,0,0\}$, hence
185+
\[
186+
S(\rho_{AB})=1.
187+
\]
188+
189+
Therefore
190+
\[
191+
I(A\!:\!B)=1+1-1=1.
192+
\]
193+
194+
\medskip
195+
\textbf{Interpretation:}
196+
\begin{itemize}
197+
\item This state has correlations, but they are purely classical.
198+
\item Bell states have maximal mutual information $I=2$, reflecting strong quantum correlations.
199+
\end{itemize}
200+
\end{frame}
201+
202+
\end{document}

0 commit comments

Comments
 (0)