|
| 1 | +\documentclass[aspectratio=169]{beamer} |
| 2 | + |
| 3 | +\usetheme{Madrid} |
| 4 | +\usecolortheme{default} |
| 5 | +\usefonttheme{professionalfonts} |
| 6 | + |
| 7 | +\usepackage{amsmath,amssymb,bm} |
| 8 | +\usepackage{braket} |
| 9 | +\usepackage{listings} |
| 10 | +\usepackage{hyperref} |
| 11 | + |
| 12 | +% --------------------------- |
| 13 | +% Listings |
| 14 | +% --------------------------- |
| 15 | +\lstset{ |
| 16 | + basicstyle=\ttfamily\small, |
| 17 | + columns=fullflexible, |
| 18 | + breaklines=true, |
| 19 | + frame=single, |
| 20 | + showstringspaces=false |
| 21 | +} |
| 22 | + |
| 23 | +\title{Exercises week 4} |
| 24 | +\subtitle{Exercises with tentative solutions} |
| 25 | +\author{Try to do the exercises first without looking at the solutions} |
| 26 | +\institute{} |
| 27 | +\date{} |
| 28 | + |
| 29 | +\begin{document} |
| 30 | + |
| 31 | +% ========================================================== |
| 32 | +\begin{frame} |
| 33 | + \titlepage |
| 34 | +\end{frame} |
| 35 | + |
| 36 | + |
| 37 | +\begin{frame}{Exercise 1: Partially entangled two-qubit state} |
| 38 | +Consider |
| 39 | +\[ |
| 40 | +\ket{\psi(\theta)}=\cos\theta\,\ket{00}+\sin\theta\,\ket{11},\qquad \theta\in[0,\pi/2]. |
| 41 | +\] |
| 42 | +\textbf{Tasks:} |
| 43 | +\begin{enumerate} |
| 44 | +\item Compute $\rho_{AB}=\ket{\psi(\theta)}\bra{\psi(\theta)}$. |
| 45 | +\item Compute $\rho_A=\Tr_B(\rho_{AB})$. |
| 46 | +\item Find eigenvalues of $\rho_A$ and compute |
| 47 | +\[ |
| 48 | +S(\rho_A),\quad S_2(\rho_A),\quad S_\alpha(\rho_A). |
| 49 | +\] |
| 50 | +\item Identify $\theta$ for which entanglement is maximal. |
| 51 | +\end{enumerate} |
| 52 | + |
| 53 | +\medskip |
| 54 | +\textbf{Hint:} $\rho_A$ will be diagonal in $\{\ket{0},\ket{1}\}$. |
| 55 | +\end{frame} |
| 56 | + |
| 57 | +% ========================================================== |
| 58 | +\begin{frame}{Solution 1 (full derivation)} |
| 59 | +Start with |
| 60 | +\[ |
| 61 | +\rho_{AB}=\ket{\psi}\bra{\psi}= |
| 62 | +\cos^2\theta\,\ket{00}\bra{00} |
| 63 | ++\cos\theta\sin\theta\,\ket{00}\bra{11} |
| 64 | ++\cos\theta\sin\theta\,\ket{11}\bra{00} |
| 65 | ++\sin^2\theta\,\ket{11}\bra{11}. |
| 66 | +\] |
| 67 | + |
| 68 | +Use $\Tr_B(\ket{ab}\bra{cd})=\braket{d}{b}\ket{a}\bra{c}$: |
| 69 | +\begin{align} |
| 70 | +\Tr_B(\ket{00}\bra{00})&=\ket{0}\bra{0},\\ |
| 71 | +\Tr_B(\ket{00}\bra{11})&=\braket{1}{0}\ket{0}\bra{1}=0,\\ |
| 72 | +\Tr_B(\ket{11}\bra{00})&=\braket{0}{1}\ket{1}\bra{0}=0,\\ |
| 73 | +\Tr_B(\ket{11}\bra{11})&=\ket{1}\bra{1}. |
| 74 | +\end{align} |
| 75 | + |
| 76 | +Therefore, |
| 77 | +\[ |
| 78 | +\rho_A=\cos^2\theta\,\ket{0}\bra{0}+\sin^2\theta\,\ket{1}\bra{1} |
| 79 | +=\begin{pmatrix} |
| 80 | +\cos^2\theta & 0\\ |
| 81 | +0 & \sin^2\theta |
| 82 | +\end{pmatrix}. |
| 83 | +\] |
| 84 | + |
| 85 | +Eigenvalues: $\lambda_1=\cos^2\theta$, $\lambda_2=\sin^2\theta$. |
| 86 | +\end{frame} |
| 87 | + |
| 88 | +% ========================================================== |
| 89 | +\begin{frame}{Solution 1: Entropies} |
| 90 | +Von Neumann entropy: |
| 91 | +\[ |
| 92 | +S(\rho_A)=-\cos^2\theta\,\log_2(\cos^2\theta)-\sin^2\theta\,\log_2(\sin^2\theta). |
| 93 | +\] |
| 94 | + |
| 95 | +Second Rényi entropy: |
| 96 | +\[ |
| 97 | +S_2(\rho_A)=-\log_2\Tr(\rho_A^2) |
| 98 | +=-\log_2\left(\cos^4\theta+\sin^4\theta\right). |
| 99 | +\] |
| 100 | + |
| 101 | +General Rényi: |
| 102 | +\[ |
| 103 | +S_\alpha(\rho_A)=\frac{1}{1-\alpha}\log_2\left((\cos^2\theta)^\alpha+(\sin^2\theta)^\alpha\right). |
| 104 | +\] |
| 105 | + |
| 106 | +\medskip |
| 107 | +\textbf{Max entanglement:} at $\theta=\pi/4$, |
| 108 | +$\lambda_1=\lambda_2=1/2$ so $S(\rho_A)=1$ bit. |
| 109 | +\end{frame} |
| 110 | + |
| 111 | +% ========================================================== |
| 112 | +\begin{frame}{Exercise 2: Measurement entropy vs state entropy} |
| 113 | +Let the single-qubit state be |
| 114 | +\[ |
| 115 | +\rho = p\ket{0}\bra{0}+(1-p)\ket{1}\bra{1},\qquad p\in[0,1]. |
| 116 | +\] |
| 117 | + |
| 118 | +\textbf{Tasks:} |
| 119 | +\begin{enumerate} |
| 120 | +\item Compute $S(\rho)$. |
| 121 | +\item Compute measurement entropy $H_{\text{meas}}$ for measuring in the $Z$ basis. |
| 122 | +\item Compute $H_{\text{meas}}$ for measuring in the $X$ basis. |
| 123 | +\end{enumerate} |
| 124 | + |
| 125 | +\medskip |
| 126 | +\textbf{Key point:} $S(\rho)$ is basis-independent, while $H_{\text{meas}}$ depends on the measurement. |
| 127 | +\end{frame} |
| 128 | + |
| 129 | +% ========================================================== |
| 130 | +\begin{frame}{Solution 2: $Z$ and $X$ measurements} |
| 131 | +Since $\rho$ is diagonal with eigenvalues $(p,1-p)$: |
| 132 | +\[ |
| 133 | +S(\rho)=-p\log_2 p-(1-p)\log_2(1-p). |
| 134 | +\] |
| 135 | + |
| 136 | +\medskip |
| 137 | +\textbf{$Z$ basis measurement:} |
| 138 | +\[ |
| 139 | +p(0)=p,\quad p(1)=1-p |
| 140 | +\Rightarrow |
| 141 | +H_Z=-p\log_2 p-(1-p)\log_2(1-p)=S(\rho). |
| 142 | +\] |
| 143 | + |
| 144 | +\medskip |
| 145 | +\textbf{$X$ basis measurement:} |
| 146 | +$\ket{\pm}=(\ket{0}\pm\ket{1})/\sqrt{2}$, with projectors $\Pi_\pm=\ket{\pm}\bra{\pm}$. |
| 147 | +Then |
| 148 | +\[ |
| 149 | +p(\pm)=\Tr(\rho\,\Pi_\pm)=\frac{1}{2}, |
| 150 | +\] |
| 151 | +so |
| 152 | +\[ |
| 153 | +H_X=1, |
| 154 | +\] |
| 155 | +independent of $p$. |
| 156 | + |
| 157 | +\medskip |
| 158 | +Thus generally $H_{\text{meas}}\ge S(\rho)$, with equality in eigenbasis of $\rho$. |
| 159 | +\end{frame} |
| 160 | + |
| 161 | +% ========================================================== |
| 162 | +\begin{frame}{Exercise 3: Mutual information for a classical mixture} |
| 163 | +Consider a two-qubit mixed state |
| 164 | +\[ |
| 165 | +\rho_{AB}= \frac{1}{2}\ket{00}\bra{00}+\frac{1}{2}\ket{11}\bra{11}. |
| 166 | +\] |
| 167 | + |
| 168 | +\textbf{Tasks:} |
| 169 | +\begin{enumerate} |
| 170 | +\item Compute $\rho_A,\rho_B$. |
| 171 | +\item Compute $S(\rho_{AB})$, $S(\rho_A)$, $S(\rho_B)$. |
| 172 | +\item Compute $I(A\!:\!B)=S(\rho_A)+S(\rho_B)-S(\rho_{AB})$. |
| 173 | +\item Compare to a Bell state, where $I(A\!:\!B)=2$. |
| 174 | +\end{enumerate} |
| 175 | +\end{frame} |
| 176 | + |
| 177 | +% ========================================================== |
| 178 | +\begin{frame}{Solution 3: Classical vs quantum correlations} |
| 179 | +Compute reduced states: |
| 180 | +\[ |
| 181 | +\rho_A=\rho_B=\frac{I_2}{2}\quad\Rightarrow\quad S(\rho_A)=S(\rho_B)=1. |
| 182 | +\] |
| 183 | + |
| 184 | +The global state has eigenvalues $\{1/2,1/2,0,0\}$, hence |
| 185 | +\[ |
| 186 | +S(\rho_{AB})=1. |
| 187 | +\] |
| 188 | + |
| 189 | +Therefore |
| 190 | +\[ |
| 191 | +I(A\!:\!B)=1+1-1=1. |
| 192 | +\] |
| 193 | + |
| 194 | +\medskip |
| 195 | +\textbf{Interpretation:} |
| 196 | +\begin{itemize} |
| 197 | +\item This state has correlations, but they are purely classical. |
| 198 | +\item Bell states have maximal mutual information $I=2$, reflecting strong quantum correlations. |
| 199 | +\end{itemize} |
| 200 | +\end{frame} |
| 201 | + |
| 202 | +\end{document} |
0 commit comments