|
52 | 52 | 2, |
53 | 53 | None, |
54 | 54 | 'basic-properties-of-hermitian-operators'), |
55 | | - ('The Pauli matrices again', 2, None, 'the-pauli-matrices-again'), |
56 | 55 | ('Spectral Decomposition', 2, None, 'spectral-decomposition'), |
57 | 56 | ('ONB again and again', 2, None, 'onb-again-and-again'), |
58 | 57 | ('Projection operators', 2, None, 'projection-operators'), |
|
179 | 178 | <!-- navigation toc: --> <li><a href="#measurements" style="font-size: 80%;">Measurements</a></li> |
180 | 179 | <!-- navigation toc: --> <li><a href="#properties-of-a-measurement" style="font-size: 80%;">Properties of a measurement</a></li> |
181 | 180 | <!-- navigation toc: --> <li><a href="#basic-properties-of-hermitian-operators" style="font-size: 80%;">Basic properties of hermitian operators</a></li> |
182 | | - <!-- navigation toc: --> <li><a href="#the-pauli-matrices-again" style="font-size: 80%;">The Pauli matrices again</a></li> |
183 | 181 | <!-- navigation toc: --> <li><a href="#spectral-decomposition" style="font-size: 80%;">Spectral Decomposition</a></li> |
184 | 182 | <!-- navigation toc: --> <li><a href="#onb-again-and-again" style="font-size: 80%;">ONB again and again</a></li> |
185 | 183 | <!-- navigation toc: --> <li><a href="#projection-operators" style="font-size: 80%;">Projection operators</a></li> |
@@ -359,21 +357,6 @@ <h2 id="basic-properties-of-hermitian-operators" class="anchor">Basic properties |
359 | 357 |
|
360 | 358 | <p>preserves both the norm and orthogonality, that is \( \langle \phi_i \vert \phi_j\rangle=\langle \psi_i \vert \psi_j\rangle=\delta_{ij} \), as discussed earlier.</p> |
361 | 359 |
|
362 | | -<!-- !split --> |
363 | | -<h2 id="the-pauli-matrices-again" class="anchor">The Pauli matrices again </h2> |
364 | | - |
365 | | -<p>As example, consider the Pauli matrix \( \sigma_x \). We have already seen that this matrix is a unitary matrix. Consider then an orthogonal and normalized basis \( \vert 0\rangle^{\dagger} =\begin{bmatrix} 1 & 0\end{bmatrix} \) and \( \vert 1\rangle^{\dagger} =\begin{bmatrix} 0 & 1\end{bmatrix} \) and a state which is a linear superposition of these two basis states</p> |
366 | | - |
367 | | -$$ |
368 | | -\vert \psi_a\rangle=\alpha_0\vert 0\rangle +\alpha_1\vert 1\rangle. |
369 | | -$$ |
370 | | - |
371 | | -<p>A new state \( \vert \psi_b\rangle \) is given by</p> |
372 | | -$$ |
373 | | -\vert \psi_b\rangle=\sigma_x\vert \psi_a\rangle=\alpha_0\vert 1\rangle +\alpha_1\vert 0\rangle. |
374 | | -$$ |
375 | | - |
376 | | - |
377 | 360 | <!-- !split --> |
378 | 361 | <h2 id="spectral-decomposition" class="anchor">Spectral Decomposition </h2> |
379 | 362 |
|
|
0 commit comments