Skip to content

Commit 76109b2

Browse files
committed
correcting typos
1 parent d6da323 commit 76109b2

File tree

8 files changed

+193
-325
lines changed

8 files changed

+193
-325
lines changed

doc/pub/week2/html/week2-bs.html

Lines changed: 0 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,6 @@
5252
2,
5353
None,
5454
'basic-properties-of-hermitian-operators'),
55-
('The Pauli matrices again', 2, None, 'the-pauli-matrices-again'),
5655
('Spectral Decomposition', 2, None, 'spectral-decomposition'),
5756
('ONB again and again', 2, None, 'onb-again-and-again'),
5857
('Projection operators', 2, None, 'projection-operators'),
@@ -179,7 +178,6 @@
179178
<!-- navigation toc: --> <li><a href="#measurements" style="font-size: 80%;">Measurements</a></li>
180179
<!-- navigation toc: --> <li><a href="#properties-of-a-measurement" style="font-size: 80%;">Properties of a measurement</a></li>
181180
<!-- navigation toc: --> <li><a href="#basic-properties-of-hermitian-operators" style="font-size: 80%;">Basic properties of hermitian operators</a></li>
182-
<!-- navigation toc: --> <li><a href="#the-pauli-matrices-again" style="font-size: 80%;">The Pauli matrices again</a></li>
183181
<!-- navigation toc: --> <li><a href="#spectral-decomposition" style="font-size: 80%;">Spectral Decomposition</a></li>
184182
<!-- navigation toc: --> <li><a href="#onb-again-and-again" style="font-size: 80%;">ONB again and again</a></li>
185183
<!-- navigation toc: --> <li><a href="#projection-operators" style="font-size: 80%;">Projection operators</a></li>
@@ -359,21 +357,6 @@ <h2 id="basic-properties-of-hermitian-operators" class="anchor">Basic properties
359357

360358
<p>preserves both the norm and orthogonality, that is \( \langle \phi_i \vert \phi_j\rangle=\langle \psi_i \vert \psi_j\rangle=\delta_{ij} \), as discussed earlier.</p>
361359

362-
<!-- !split -->
363-
<h2 id="the-pauli-matrices-again" class="anchor">The Pauli matrices again </h2>
364-
365-
<p>As example, consider the Pauli matrix \( \sigma_x \). We have already seen that this matrix is a unitary matrix. Consider then an orthogonal and normalized basis \( \vert 0\rangle^{\dagger} =\begin{bmatrix} 1 &amp; 0\end{bmatrix} \) and \( \vert 1\rangle^{\dagger} =\begin{bmatrix} 0 &amp; 1\end{bmatrix} \) and a state which is a linear superposition of these two basis states</p>
366-
367-
$$
368-
\vert \psi_a\rangle=\alpha_0\vert 0\rangle +\alpha_1\vert 1\rangle.
369-
$$
370-
371-
<p>A new state \( \vert \psi_b\rangle \) is given by</p>
372-
$$
373-
\vert \psi_b\rangle=\sigma_x\vert \psi_a\rangle=\alpha_0\vert 1\rangle +\alpha_1\vert 0\rangle.
374-
$$
375-
376-
377360
<!-- !split -->
378361
<h2 id="spectral-decomposition" class="anchor">Spectral Decomposition </h2>
379362

doc/pub/week2/html/week2-reveal.html

Lines changed: 0 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -301,25 +301,6 @@ <h2 id="basic-properties-of-hermitian-operators">Basic properties of hermitian o
301301
<p>preserves both the norm and orthogonality, that is \( \langle \phi_i \vert \phi_j\rangle=\langle \psi_i \vert \psi_j\rangle=\delta_{ij} \), as discussed earlier.</p>
302302
</section>
303303

304-
<section>
305-
<h2 id="the-pauli-matrices-again">The Pauli matrices again </h2>
306-
307-
<p>As example, consider the Pauli matrix \( \sigma_x \). We have already seen that this matrix is a unitary matrix. Consider then an orthogonal and normalized basis \( \vert 0\rangle^{\dagger} =\begin{bmatrix} 1 &amp; 0\end{bmatrix} \) and \( \vert 1\rangle^{\dagger} =\begin{bmatrix} 0 &amp; 1\end{bmatrix} \) and a state which is a linear superposition of these two basis states</p>
308-
309-
<p>&nbsp;<br>
310-
$$
311-
\vert \psi_a\rangle=\alpha_0\vert 0\rangle +\alpha_1\vert 1\rangle.
312-
$$
313-
<p>&nbsp;<br>
314-
315-
<p>A new state \( \vert \psi_b\rangle \) is given by</p>
316-
<p>&nbsp;<br>
317-
$$
318-
\vert \psi_b\rangle=\sigma_x\vert \psi_a\rangle=\alpha_0\vert 1\rangle +\alpha_1\vert 0\rangle.
319-
$$
320-
<p>&nbsp;<br>
321-
</section>
322-
323304
<section>
324305
<h2 id="spectral-decomposition">Spectral Decomposition </h2>
325306

doc/pub/week2/html/week2-solarized.html

Lines changed: 0 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,6 @@
7979
2,
8080
None,
8181
'basic-properties-of-hermitian-operators'),
82-
('The Pauli matrices again', 2, None, 'the-pauli-matrices-again'),
8382
('Spectral Decomposition', 2, None, 'spectral-decomposition'),
8483
('ONB again and again', 2, None, 'onb-again-and-again'),
8584
('Projection operators', 2, None, 'projection-operators'),
@@ -302,21 +301,6 @@ <h2 id="basic-properties-of-hermitian-operators">Basic properties of hermitian o
302301

303302
<p>preserves both the norm and orthogonality, that is \( \langle \phi_i \vert \phi_j\rangle=\langle \psi_i \vert \psi_j\rangle=\delta_{ij} \), as discussed earlier.</p>
304303

305-
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
306-
<h2 id="the-pauli-matrices-again">The Pauli matrices again </h2>
307-
308-
<p>As example, consider the Pauli matrix \( \sigma_x \). We have already seen that this matrix is a unitary matrix. Consider then an orthogonal and normalized basis \( \vert 0\rangle^{\dagger} =\begin{bmatrix} 1 &amp; 0\end{bmatrix} \) and \( \vert 1\rangle^{\dagger} =\begin{bmatrix} 0 &amp; 1\end{bmatrix} \) and a state which is a linear superposition of these two basis states</p>
309-
310-
$$
311-
\vert \psi_a\rangle=\alpha_0\vert 0\rangle +\alpha_1\vert 1\rangle.
312-
$$
313-
314-
<p>A new state \( \vert \psi_b\rangle \) is given by</p>
315-
$$
316-
\vert \psi_b\rangle=\sigma_x\vert \psi_a\rangle=\alpha_0\vert 1\rangle +\alpha_1\vert 0\rangle.
317-
$$
318-
319-
320304
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
321305
<h2 id="spectral-decomposition">Spectral Decomposition </h2>
322306

doc/pub/week2/html/week2.html

Lines changed: 0 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -156,7 +156,6 @@
156156
2,
157157
None,
158158
'basic-properties-of-hermitian-operators'),
159-
('The Pauli matrices again', 2, None, 'the-pauli-matrices-again'),
160159
('Spectral Decomposition', 2, None, 'spectral-decomposition'),
161160
('ONB again and again', 2, None, 'onb-again-and-again'),
162161
('Projection operators', 2, None, 'projection-operators'),
@@ -379,21 +378,6 @@ <h2 id="basic-properties-of-hermitian-operators">Basic properties of hermitian o
379378

380379
<p>preserves both the norm and orthogonality, that is \( \langle \phi_i \vert \phi_j\rangle=\langle \psi_i \vert \psi_j\rangle=\delta_{ij} \), as discussed earlier.</p>
381380

382-
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
383-
<h2 id="the-pauli-matrices-again">The Pauli matrices again </h2>
384-
385-
<p>As example, consider the Pauli matrix \( \sigma_x \). We have already seen that this matrix is a unitary matrix. Consider then an orthogonal and normalized basis \( \vert 0\rangle^{\dagger} =\begin{bmatrix} 1 &amp; 0\end{bmatrix} \) and \( \vert 1\rangle^{\dagger} =\begin{bmatrix} 0 &amp; 1\end{bmatrix} \) and a state which is a linear superposition of these two basis states</p>
386-
387-
$$
388-
\vert \psi_a\rangle=\alpha_0\vert 0\rangle +\alpha_1\vert 1\rangle.
389-
$$
390-
391-
<p>A new state \( \vert \psi_b\rangle \) is given by</p>
392-
$$
393-
\vert \psi_b\rangle=\sigma_x\vert \psi_a\rangle=\alpha_0\vert 1\rangle +\alpha_1\vert 0\rangle.
394-
$$
395-
396-
397381
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
398382
<h2 id="spectral-decomposition">Spectral Decomposition </h2>
399383

0 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)