@@ -714,11 +714,25 @@ plt.show()
714714!split
715715===== Gates, the whys and hows =====
716716
717+ In quantum computing it is common to rewrite various unitary
718+ transformations acting on a given state in terms of so-called gates
719+ (one-qubit, two-qubit or more qubit gates). These unitary
720+ transformations do actually represent specific interactions (for
721+ example with extenrally applied probes) of the system with the
722+ environment.
723+
724+ Each such operation is by convention written in terms of gates and a
725+ chain of such gates represents a circuit. The latter represents then a
726+ specific set of operations on an initial state.
727+
728+ The aim of the first set of notes this week is to link these gates
729+ (and thereby circuits) to their respective unitary
730+ transformation. These unitary transformations represent selected
731+ physical processes.
717732
733+ !split
734+ ===== Mathematical background =====
718735
719- \frametitle{Schr\"odinger picture}
720- \begin{small}
721- {\scriptsize
722736The time-dependent Schr\"odinger equation (or equation of motion) reads
723737\[
724738\imath \hbar\frac{\partial }{\partial t}|\Psi_S(t)\rangle = \hat{H}\Psi_S(t)\rangle,
@@ -730,14 +744,10 @@ A formal solution is given by
730744\]
731745The Hamiltonian $\hat{H}$ is hermitian and the exponent represents a unitary
732746operator with an operation carried ut on the wave function at a time $t_0$.
733- }
734- \end{small}
735- }
736- \frame
737- {
738- \frametitle{Interaction picture}
739- \begin{small}
740- {\scriptsize
747+
748+ !split
749+ ===== Interaction picture =====
750+
741751Our Hamiltonian is normally written out as the sum of an unperturbed part $\hat{H}_0$ and an interaction part $\hat{H}_I$, that is
742752\[
743753\hat{H}=\hat{H}_0+\hat{H}_I.
@@ -749,23 +759,20 @@ We wish now to define a unitary transformation in terms of $\hat{H}_0$ by defini
749759\]
750760which is again a unitary transformation carried out now at the time $t$ on the
751761wave function in the Schr\"odinger picture.
752- }
753- \end{small}
754- }
755- \frame
756- {
757- \frametitle{Interaction picture}
758- \begin{small}
759- {\scriptsize
762+
763+ !split
764+ ===== Interaction picture =====
765+
766+
760767We can easily find the equation of motion by taking the time derivative
761768\[
762769\imath \hbar\frac{\partial }{\partial t}|\Psi_I(t)\rangle = -\hat{H}_0\exp{(\imath\hat{H}_0t/\hbar)}\Psi_S(t)\rangle+\exp{(\imath\hat{H}_0t/\hbar)}
763770\imath \hbar\frac{\partial }{\partial t}\Psi_S(t)\rangle.
764771\]
765- }
766- \end{small}
767- }
768- \frame
772+
773+ !split
774+ ===== Interaction picture =====
775+
769776{
770777\frametitle{Interaction picture}
771778\begin{small}
@@ -786,6 +793,13 @@ which gives us
786793}
787794\end{small}
788795}
796+
797+
798+ !split
799+ ===== Interaction picture =====
800+
801+
802+
789803\frame
790804{
791805\frametitle{Interaction picture}
@@ -813,6 +827,13 @@ stating that a unitary transformation does not change expectation values!
813827}
814828\end{small}
815829}
830+
831+
832+ !split
833+ ===== Interaction picture =====
834+
835+
836+
816837\frame
817838{
818839\frametitle{Interaction picture}
@@ -827,6 +848,13 @@ together with the observation that any function of an operator commutes with the
827848}
828849\end{small}
829850}
851+
852+
853+ !split
854+ ===== Interaction picture =====
855+
856+
857+
830858\frame
831859{
832860\frametitle{Interaction picture}
@@ -844,6 +872,12 @@ with the obvious value $\hat{U}(t_0,t_0)=1$.
844872}
845873\end{small}
846874}
875+
876+ !split
877+ ===== Interaction picture =====
878+
879+
880+
847881\frame
848882{
849883\frametitle{Interaction picture}
@@ -873,6 +907,12 @@ which leads to
873907}
874908\end{small}
875909}
910+
911+
912+ !split
913+ ===== Interaction picture =====
914+
915+
876916\frame
877917{
878918\frametitle{Interaction picture}
895935}
896936\frame
897937{
938+
939+
940+ !split
941+ ===== Interaction picture =====
942+
943+
944+
898945\frametitle{Interaction picture}
899946\begin{small}
900947{\scriptsize
@@ -906,6 +953,14 @@ It is then easy to convince oneself that the properties defined above are satisf
906953}
907954\end{small}
908955}
956+
957+
958+
959+ !split
960+ ===== Interaction picture =====
961+
962+
963+
909964\frame
910965{
911966\frametitle{Interaction picture}
@@ -929,6 +984,15 @@ which can be rewritten as
929984}
930985\frame
931986{
987+
988+
989+
990+ !split
991+ ===== Interaction picture =====
992+
993+
994+
995+
932996\frametitle{Interaction picture}
933997\begin{small}
934998{\scriptsize
@@ -947,6 +1011,13 @@ The third term can be written as
9471011}
9481012\frame
9491013{
1014+
1015+
1016+ !split
1017+ ===== Interaction picture =====
1018+
1019+
1020+
9501021\frametitle{Interaction picture}
9511022\begin{small}
9521023{\scriptsize
@@ -968,6 +1039,14 @@ with $\Theta(t''-t')$ being the standard Heavyside or step function. The step fu
9681039}
9691040\frame
9701041{
1042+
1043+
1044+ !split
1045+ ===== Interaction picture =====
1046+
1047+
1048+
1049+
9711050\frametitle{Interaction picture}
9721051\begin{small}
9731052{\scriptsize
@@ -982,6 +1061,14 @@ where $\Hat{T}$ is the so-called time-ordering operator.
9821061}
9831062\frame
9841063{
1064+
1065+
1066+ !split
1067+ ===== Interaction picture =====
1068+
1069+
1070+
1071+
9851072\frametitle{Interaction picture}
9861073\begin{small}
9871074{\scriptsize
@@ -998,6 +1085,14 @@ to derive various contributions to many-body perturbation theory. See also exerc
9981085}
9991086\frame
10001087{
1088+
1089+
1090+ !split
1091+ ===== Interaction picture =====
1092+
1093+
1094+
1095+
10011096\frametitle{Heisenberg picture}
10021097\begin{small}
10031098{\scriptsize
@@ -1019,6 +1114,13 @@ meaning that $|\Psi_H(t)\rangle$ is time independent. An operator in this pictur
10191114}
10201115\end{small}
10211116}
1117+
1118+
1119+ !split
1120+ ===== Interaction picture =====
1121+
1122+
1123+
10221124\frame
10231125{
10241126\frametitle{Heisenberg picture}
@@ -1040,6 +1142,12 @@ operator in the interaction picture as
10401142}
10411143\end{small}
10421144}
1145+
1146+ !split
1147+ ===== Interaction picture =====
1148+
1149+
1150+
10431151\frame
10441152{
10451153\frametitle{Heisenberg picture}
@@ -1064,6 +1172,13 @@ We can relate this wave function to that a given time $t$ via the time evolution
10641172}
10651173\frame
10661174{
1175+
1176+
1177+ !split
1178+ ===== Interaction picture =====
1179+
1180+
1181+
10671182\frametitle{Adiabatic hypothesis}
10681183\begin{small}
10691184{\scriptsize
@@ -1081,6 +1196,12 @@ and its interaction term is meant to simulate the switching of the interaction.
10811196}
10821197\frame
10831198{
1199+
1200+ !split
1201+ ===== Interaction picture =====
1202+
1203+
1204+
10841205\frametitle{Adiabatic hypothesis}
10851206\begin{small}
10861207{\scriptsize
@@ -1093,14 +1214,11 @@ with
10931214\hat{U}_{\varepsilon}(t,t_0)=\sum_{n=0}^{\infty}\left(\frac{-\imath}{\hbar}\right)^n\frac{1}{n!}
10941215\int_{t_0}^t dt_1\dots \int_{t_0}^t dt_N \exp{(-\varepsilon(t_1+\dots+t_n)/\hbar)}\hat{T}\left[\hat{H}_I(t_1)\dots\hat{H}_I(t_n)\right]
10951216\]
1096- }
1097- \end{small}
1098- }
1099- \frame
1100- {
1101- \frametitle{Adiabatic hypothesis}
1102- \begin{small}
1103- {\scriptsize
1217+
1218+
1219+ !split
1220+ ===== Interaction picture =====
1221+
11041222In the limit $t_0\rightarrow -\infty$, the solution ot Schr\"odinger's equation is
11051223$|\Phi_0\rangle$, and the eigenenergies are given by
11061224\[
@@ -1114,14 +1232,12 @@ with the corresponding interaction picture wave function given by
11141232\[
11151233|\Psi_I(t_0)\rangle = \exp{(\imath \hat{H}_0t_0/\hbar)}|\Psi_S(t_0)\rangle=|\Phi_0\rangle.
11161234\]
1117- }
1118- \end{small}
1119- }
1120- \frame
1121- {
1122- \frametitle{Adiabatic hypothesis}
1123- \begin{small}
1124- {\scriptsize
1235+
1236+
1237+
1238+ !split
1239+ ===== Interaction picture =====
1240+
11251241The solution becomes time independent in the limit $t_0\rightarrow -\infty$.
11261242The same conclusion can be reached by looking at
11271243\[
@@ -1133,6 +1249,3 @@ We can rewrite the equation for the wave function at a time $t=0$ as
11331249\[
11341250|\Psi_I(0) \rangle = \hat{U}_{\varepsilon}(0,-\infty)|\Phi_0\rangle.
11351251\]
1136- }
1137- \end{small}
1138- }
0 commit comments