Skip to content

Commit 6d3cfc4

Browse files
committed
Update week4.do.txt
1 parent bc99ba8 commit 6d3cfc4

File tree

1 file changed

+155
-42
lines changed

1 file changed

+155
-42
lines changed

doc/src/week4/week4.do.txt

Lines changed: 155 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -714,11 +714,25 @@ plt.show()
714714
!split
715715
===== Gates, the whys and hows =====
716716

717+
In quantum computing it is common to rewrite various unitary
718+
transformations acting on a given state in terms of so-called gates
719+
(one-qubit, two-qubit or more qubit gates). These unitary
720+
transformations do actually represent specific interactions (for
721+
example with extenrally applied probes) of the system with the
722+
environment.
723+
724+
Each such operation is by convention written in terms of gates and a
725+
chain of such gates represents a circuit. The latter represents then a
726+
specific set of operations on an initial state.
727+
728+
The aim of the first set of notes this week is to link these gates
729+
(and thereby circuits) to their respective unitary
730+
transformation. These unitary transformations represent selected
731+
physical processes.
717732

733+
!split
734+
===== Mathematical background =====
718735

719-
\frametitle{Schr\"odinger picture}
720-
\begin{small}
721-
{\scriptsize
722736
The time-dependent Schr\"odinger equation (or equation of motion) reads
723737
\[
724738
\imath \hbar\frac{\partial }{\partial t}|\Psi_S(t)\rangle = \hat{H}\Psi_S(t)\rangle,
@@ -730,14 +744,10 @@ A formal solution is given by
730744
\]
731745
The Hamiltonian $\hat{H}$ is hermitian and the exponent represents a unitary
732746
operator with an operation carried ut on the wave function at a time $t_0$.
733-
}
734-
\end{small}
735-
}
736-
\frame
737-
{
738-
\frametitle{Interaction picture}
739-
\begin{small}
740-
{\scriptsize
747+
748+
!split
749+
===== Interaction picture =====
750+
741751
Our Hamiltonian is normally written out as the sum of an unperturbed part $\hat{H}_0$ and an interaction part $\hat{H}_I$, that is
742752
\[
743753
\hat{H}=\hat{H}_0+\hat{H}_I.
@@ -749,23 +759,20 @@ We wish now to define a unitary transformation in terms of $\hat{H}_0$ by defini
749759
\]
750760
which is again a unitary transformation carried out now at the time $t$ on the
751761
wave function in the Schr\"odinger picture.
752-
}
753-
\end{small}
754-
}
755-
\frame
756-
{
757-
\frametitle{Interaction picture}
758-
\begin{small}
759-
{\scriptsize
762+
763+
!split
764+
===== Interaction picture =====
765+
766+
760767
We can easily find the equation of motion by taking the time derivative
761768
\[
762769
\imath \hbar\frac{\partial }{\partial t}|\Psi_I(t)\rangle = -\hat{H}_0\exp{(\imath\hat{H}_0t/\hbar)}\Psi_S(t)\rangle+\exp{(\imath\hat{H}_0t/\hbar)}
763770
\imath \hbar\frac{\partial }{\partial t}\Psi_S(t)\rangle.
764771
\]
765-
}
766-
\end{small}
767-
}
768-
\frame
772+
773+
!split
774+
===== Interaction picture =====
775+
769776
{
770777
\frametitle{Interaction picture}
771778
\begin{small}
@@ -786,6 +793,13 @@ which gives us
786793
}
787794
\end{small}
788795
}
796+
797+
798+
!split
799+
===== Interaction picture =====
800+
801+
802+
789803
\frame
790804
{
791805
\frametitle{Interaction picture}
@@ -813,6 +827,13 @@ stating that a unitary transformation does not change expectation values!
813827
}
814828
\end{small}
815829
}
830+
831+
832+
!split
833+
===== Interaction picture =====
834+
835+
836+
816837
\frame
817838
{
818839
\frametitle{Interaction picture}
@@ -827,6 +848,13 @@ together with the observation that any function of an operator commutes with the
827848
}
828849
\end{small}
829850
}
851+
852+
853+
!split
854+
===== Interaction picture =====
855+
856+
857+
830858
\frame
831859
{
832860
\frametitle{Interaction picture}
@@ -844,6 +872,12 @@ with the obvious value $\hat{U}(t_0,t_0)=1$.
844872
}
845873
\end{small}
846874
}
875+
876+
!split
877+
===== Interaction picture =====
878+
879+
880+
847881
\frame
848882
{
849883
\frametitle{Interaction picture}
@@ -873,6 +907,12 @@ which leads to
873907
}
874908
\end{small}
875909
}
910+
911+
912+
!split
913+
===== Interaction picture =====
914+
915+
876916
\frame
877917
{
878918
\frametitle{Interaction picture}
@@ -895,6 +935,13 @@ or
895935
}
896936
\frame
897937
{
938+
939+
940+
!split
941+
===== Interaction picture =====
942+
943+
944+
898945
\frametitle{Interaction picture}
899946
\begin{small}
900947
{\scriptsize
@@ -906,6 +953,14 @@ It is then easy to convince oneself that the properties defined above are satisf
906953
}
907954
\end{small}
908955
}
956+
957+
958+
959+
!split
960+
===== Interaction picture =====
961+
962+
963+
909964
\frame
910965
{
911966
\frametitle{Interaction picture}
@@ -929,6 +984,15 @@ which can be rewritten as
929984
}
930985
\frame
931986
{
987+
988+
989+
990+
!split
991+
===== Interaction picture =====
992+
993+
994+
995+
932996
\frametitle{Interaction picture}
933997
\begin{small}
934998
{\scriptsize
@@ -947,6 +1011,13 @@ The third term can be written as
9471011
}
9481012
\frame
9491013
{
1014+
1015+
1016+
!split
1017+
===== Interaction picture =====
1018+
1019+
1020+
9501021
\frametitle{Interaction picture}
9511022
\begin{small}
9521023
{\scriptsize
@@ -968,6 +1039,14 @@ with $\Theta(t''-t')$ being the standard Heavyside or step function. The step fu
9681039
}
9691040
\frame
9701041
{
1042+
1043+
1044+
!split
1045+
===== Interaction picture =====
1046+
1047+
1048+
1049+
9711050
\frametitle{Interaction picture}
9721051
\begin{small}
9731052
{\scriptsize
@@ -982,6 +1061,14 @@ where $\Hat{T}$ is the so-called time-ordering operator.
9821061
}
9831062
\frame
9841063
{
1064+
1065+
1066+
!split
1067+
===== Interaction picture =====
1068+
1069+
1070+
1071+
9851072
\frametitle{Interaction picture}
9861073
\begin{small}
9871074
{\scriptsize
@@ -998,6 +1085,14 @@ to derive various contributions to many-body perturbation theory. See also exerc
9981085
}
9991086
\frame
10001087
{
1088+
1089+
1090+
!split
1091+
===== Interaction picture =====
1092+
1093+
1094+
1095+
10011096
\frametitle{Heisenberg picture}
10021097
\begin{small}
10031098
{\scriptsize
@@ -1019,6 +1114,13 @@ meaning that $|\Psi_H(t)\rangle$ is time independent. An operator in this pictur
10191114
}
10201115
\end{small}
10211116
}
1117+
1118+
1119+
!split
1120+
===== Interaction picture =====
1121+
1122+
1123+
10221124
\frame
10231125
{
10241126
\frametitle{Heisenberg picture}
@@ -1040,6 +1142,12 @@ operator in the interaction picture as
10401142
}
10411143
\end{small}
10421144
}
1145+
1146+
!split
1147+
===== Interaction picture =====
1148+
1149+
1150+
10431151
\frame
10441152
{
10451153
\frametitle{Heisenberg picture}
@@ -1064,6 +1172,13 @@ We can relate this wave function to that a given time $t$ via the time evolution
10641172
}
10651173
\frame
10661174
{
1175+
1176+
1177+
!split
1178+
===== Interaction picture =====
1179+
1180+
1181+
10671182
\frametitle{Adiabatic hypothesis}
10681183
\begin{small}
10691184
{\scriptsize
@@ -1081,6 +1196,12 @@ and its interaction term is meant to simulate the switching of the interaction.
10811196
}
10821197
\frame
10831198
{
1199+
1200+
!split
1201+
===== Interaction picture =====
1202+
1203+
1204+
10841205
\frametitle{Adiabatic hypothesis}
10851206
\begin{small}
10861207
{\scriptsize
@@ -1093,14 +1214,11 @@ with
10931214
\hat{U}_{\varepsilon}(t,t_0)=\sum_{n=0}^{\infty}\left(\frac{-\imath}{\hbar}\right)^n\frac{1}{n!}
10941215
\int_{t_0}^t dt_1\dots \int_{t_0}^t dt_N \exp{(-\varepsilon(t_1+\dots+t_n)/\hbar)}\hat{T}\left[\hat{H}_I(t_1)\dots\hat{H}_I(t_n)\right]
10951216
\]
1096-
}
1097-
\end{small}
1098-
}
1099-
\frame
1100-
{
1101-
\frametitle{Adiabatic hypothesis}
1102-
\begin{small}
1103-
{\scriptsize
1217+
1218+
1219+
!split
1220+
===== Interaction picture =====
1221+
11041222
In the limit $t_0\rightarrow -\infty$, the solution ot Schr\"odinger's equation is
11051223
$|\Phi_0\rangle$, and the eigenenergies are given by
11061224
\[
@@ -1114,14 +1232,12 @@ with the corresponding interaction picture wave function given by
11141232
\[
11151233
|\Psi_I(t_0)\rangle = \exp{(\imath \hat{H}_0t_0/\hbar)}|\Psi_S(t_0)\rangle=|\Phi_0\rangle.
11161234
\]
1117-
}
1118-
\end{small}
1119-
}
1120-
\frame
1121-
{
1122-
\frametitle{Adiabatic hypothesis}
1123-
\begin{small}
1124-
{\scriptsize
1235+
1236+
1237+
1238+
!split
1239+
===== Interaction picture =====
1240+
11251241
The solution becomes time independent in the limit $t_0\rightarrow -\infty$.
11261242
The same conclusion can be reached by looking at
11271243
\[
@@ -1133,6 +1249,3 @@ We can rewrite the equation for the wave function at a time $t=0$ as
11331249
\[
11341250
|\Psi_I(0) \rangle = \hat{U}_{\varepsilon}(0,-\infty)|\Phi_0\rangle.
11351251
\]
1136-
}
1137-
\end{small}
1138-
}

0 commit comments

Comments
 (0)