You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
\textbf{Quantum Boltzmann Machines} leverage quantum mechanics to sample from a probability distribution.
133
-
134
-
\begin{itemize}
135
-
\item Quantum tunneling aids in escaping local minima.
136
-
\item Quantum annealing for optimization problems.
137
-
\end{itemize}
138
-
139
-
\pause
140
-
\textbf{Quantum Hamiltonian:}
114
+
!et
115
+
subject to
116
+
!bt
141
117
\[
142
-
H = -\sum_i b_i \sigma_i^z - \sum_{ij} w_{ij} \sigma_i^z \sigma_j^z
118
+
y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1, \quad \forall i
143
119
\]
120
+
!et
144
121
145
-
\textbf{Advantage:}
146
-
- Efficient sampling in complex probability distributions.
147
-
\end{frame}
148
-
149
-
150
-
\section{Future Perspectives}
151
-
\begin{frame}{Future Perspectives in QML}
152
-
\textbf{1. Fault-Tolerant Quantum Computing:}
153
-
\begin{itemize}
154
-
\item Overcoming noise for stable quantum circuits.
155
-
\end{itemize}
156
-
157
-
\textbf{2. Hybrid Quantum-Classical Models:}
158
-
\begin{itemize}
159
-
\item Combining quantum circuits with classical neural networks.
160
-
\end{itemize}
122
+
!split
123
+
===== Kernels and more =====
161
124
162
-
\textbf{3. Quantum Internet:}
163
-
\begin{itemize}
164
-
\item Distributed quantum machine learning over quantum networks.
165
-
\end{itemize}
166
-
\end{frame}
125
+
In classical SVMs, kernels help with non-linear data
126
+
separations. Quantum computers can speed up the computation of complex
127
+
kernel evaluations by efficiently simulating an inner product in an
128
+
exponentially large Hilbert space.
167
129
168
130
169
131
170
-
\section{Introduction to Support Vector Machines}
132
+
!split
133
+
===== Quantum Support Vector Machines (QSVMs) =====
171
134
172
-
\subsection{Basic Concepts}
173
-
Support Vector Machines (SVM) are supervised learning algorithms used for classification tasks. The main goal of SVM is to find the optimal separating hyperplane (in high-dimensional space) that provides a maximum margin between classes.
135
+
!bblock Quantum Kernel Estimation:
136
+
o Maps classical data to a quantum Hilbert space.
137
+
o Quantum kernel measures similarity in high-dimensional space.
138
+
!eblock
174
139
175
-
\subsection{Mathematical Formulation}
176
-
For a dataset \((\mathbf{x}_i, y_i)\) where \(\mathbf{x}_i \in \mathbb{R}^n\) and \(y_i \in \{-1, 1\}\), the decision boundary is defined as:
Advantage:Quantum gradients enable exploration of non-convex landscapes.
191
171
192
-
\section{Quantum Support Vector Machines}
193
-
194
-
\subsection{Motivation}
195
-
QSVM leverages quantum computations such as quantum phase estimation and quantum matrix inversion to enhance SVM algorithms, particularly in efficiently handling large datasets and complex kernels.
196
-
197
-
\subsection{Quantum Kernel Estimation}
198
-
In classical SVM, kernels help with non-linear data separations. Quantum computers can speed up the computation of complex kernel evaluations by efficiently simulating an inner product in an exponentially large Hilbert space.
172
+
!split
173
+
===== Quantum Boltzmann Machines (QBMs) =====
199
174
200
-
\subsubsection{Quantum Kernel Trick}
201
-
Similar to classical SVM, QSVM utilizes a \textit{quantum-enhanced kernel}:
175
+
Quantum Boltzmann Machines leverage quantum mechanics to sample from a probability distribution.
202
176
177
+
!bblock
178
+
o Quantum tunneling aids in escaping local minima.
H = -\sum_i b_i \sigma_i^z - \sum_{ij} w_{ij} \sigma_i^z \sigma_j^z
205
185
\]
186
+
!et
187
+
!eblock
188
+
Advantage: Efficient sampling in complex probability distributions.
206
189
207
-
Here, \(|\phi(\mathbf{x})\rangle\) is the quantum state encoding of the classical data \(\mathbf{x}\).
208
-
209
-
\section{Quantum Advantage in SVM}
210
190
211
-
\subsection{Quantum Speedup}
212
-
Quantum algorithms like HHL (Harrow, Hassidim, and Lloyd) algorithm for solving linear equations provides polynomial speedup, exploiting quantum parallelism and entanglement.
191
+
!split
192
+
===== Back to math of SVMs =====
213
193
214
-
\subsection{Practical Considerations}
215
-
Actual implementation challenges include qubit coherence times, error rates, and noise management, alongside classical preprocessing strategies to leverage quantum-enhanced procedures efficiently.
216
194
217
-
\section{Applications}
218
-
Quantum Support Vector Machines present vast potential in finance for fraud detection, in healthcare for diagnosing conditions from large biological datasets, and broadly in any area requiring rapid classification and pattern recognition above classical limits.
219
195
220
-
\section{Conclusion and Future Work}
221
-
QSVM embodies promising potential advancements in quantum machine learning. The road forward involves demonstrating tangible quantum advantages on existing quantum hardware, advancing error correction techniques, and developing larger qubit systems.
222
196
223
-
\documentclass[11pt]{article}
224
-
\usepackage[margin=1in]{geometry}
225
-
\usepackage{amsmath, amsfonts, amssymb, bm}
226
-
\usepackage{graphicx}
227
-
\usepackage{hyperref}
228
-
\usepackage{physics}
229
-
\usepackage{mathtools}
230
-
\usepackage{braket}
231
197
232
-
\title{Advanced Topics in Quantum Boltzmann Machines}
\section{Introduction to Quantum Boltzmann Machines (QBMs)}
244
-
Quantum Boltzmann Machines (QBMs) are a quantum generalization of classical Boltzmann machines. They leverage quantum effects such as superposition and entanglement to model complex probability distributions. QBMs are well-suited for quantum machine learning tasks, particularly for generative modeling.
245
-
246
-
\subsection{Motivation}
247
-
Classical Boltzmann Machines suffer from high-dimensional sampling complexity. Quantum mechanics offers exponential state space and quantum tunneling effects that can alleviate these issues.
The goal of training a QBM is to minimize the Kullback–Leibler (KL) divergence between the data distribution \( p_{\text{data}} \) and the model distribution \( p_{\theta} \):
Quantum Monte Carlo (QMC) simulates quantum systems by sampling from the quantum density matrix using classical resources. However, it faces limitations due to the **sign problem**.
316
-
317
-
\subsection{Quantum Annealing}
318
-
Quantum annealers leverage adiabatic evolution to reach low-energy states efficiently:
Quantum Boltzmann Machines offer a promising path for leveraging quantum resources in machine learning. While hardware limitations currently restrict scalability, ongoing research in quantum algorithms and quantum hardware is likely to overcome these obstacles.
0 commit comments