Skip to content

Commit 2644c33

Browse files
committed
update
1 parent 0c6f733 commit 2644c33

File tree

8 files changed

+353
-528
lines changed

8 files changed

+353
-528
lines changed

doc/pub/week1/html/week1-bs.html

Lines changed: 10 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -88,10 +88,6 @@
8888
('More', 2, None, 'more'),
8989
('The options', 2, None, 'the-options'),
9090
('Present day', 2, None, 'present-day'),
91-
('Emerging quantum computers',
92-
2,
93-
None,
94-
'emerging-quantum-computers'),
9591
('Emerging quantum computers',
9692
2,
9793
None,
@@ -332,7 +328,6 @@
332328
<!-- navigation toc: --> <li><a href="#the-options" style="font-size: 80%;">The options</a></li>
333329
<!-- navigation toc: --> <li><a href="#present-day" style="font-size: 80%;">Present day</a></li>
334330
<!-- navigation toc: --> <li><a href="#emerging-quantum-computers" style="font-size: 80%;">Emerging quantum computers</a></li>
335-
<!-- navigation toc: --> <li><a href="#emerging-quantum-computers" style="font-size: 80%;">Emerging quantum computers</a></li>
336331
<!-- navigation toc: --> <li><a href="#quantum-supremacy" style="font-size: 80%;">Quantum supremacy</a></li>
337332
<!-- navigation toc: --> <li><a href="#summary-of-hardware-efforts" style="font-size: 80%;">Summary of hardware efforts</a></li>
338333
<!-- navigation toc: --> <li><a href="#quantum-algorithms" style="font-size: 80%;">Quantum algorithms</a></li>
@@ -633,7 +628,7 @@ <h2 id="what-is-quantum-computing" class="anchor">What is quantum computing? </h
633628
<div class="panel panel-default">
634629
<div class="panel-body">
635630
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
636-
<p>Formulated in the early 20th century to explain the behavior of subatomic particles. QM, and its specializations (quantum field theory, quantum chromodynamics, many-body physics etc.), have been spectacularly successful in explaining microscopic physical phenomena.</p>
631+
<p>Quantum mechanics, Formulated in the early 20th century, and its specializations (quantum field theory, quantum chromodynamics, many-body physics etc.), have been spectacularly successful in explaining microscopic physical phenomena.</p>
637632
</div>
638633
</div>
639634

@@ -646,7 +641,7 @@ <h2 id="the-exponentiality-of-qm" class="anchor">The exponentiality of QM </h2>
646641
<p>After nearly a century of study, the best (classical) methods for predicting the behavior of general quantum systems require exponential resources.</p>
647642
<ol>
648643
<li> The state of \( N \) particles requires at least \( 2^{N} \) numbers to describe.</li>
649-
<li> For \( N \sim 300 \) (the number of particles in a single uranium atom), \[
644+
<li> For \( N \sim 300 \) (the number of particles in a single uranium atom and looking only at spin degrees freedom), \[
650645
<p> 2^{300} \gg \approx 10^{82}\quad (\text{\# of atoms in the observable universe}).
651646
\]
652647
</p></li>
@@ -658,6 +653,7 @@ <h2 id="the-exponentiality-of-qm" class="anchor">The exponentiality of QM </h2>
658653

659654
<!-- !split -->
660655
<h2 id="the-exponentiality-of-qm-i" class="anchor">The exponentiality of QM I </h2>
656+
661657
<div class="panel panel-default">
662658
<div class="panel-body">
663659
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
@@ -759,7 +755,7 @@ <h2 id="which-is-wrong" class="anchor">Which is wrong? </h2>
759755
<li> Option 1: QM is wrong</li>
760756
<ul>
761757
<li> Perhaps the most successful theory of nature to date.</li>
762-
<li> In all its domains of applicability, we have never found experimental disagreement.</li>
758+
<li> In all its domains of applicability, we have never found experimental disagreement (for example <a href="https://iopscience.iop.org/article/10.1088/1742-6596/306/1/012036/pdf" target="_self">test of the Pauli principle</a>).</li>
763759
</ul>
764760
<li> Option 2: Polynomial-time classical factoring algorithm.</li>
765761
<ul>
@@ -820,20 +816,6 @@ <h2 id="present-day" class="anchor">Present day </h2>
820816
</div>
821817

822818

823-
<!-- !split -->
824-
<h2 id="emerging-quantum-computers" class="anchor">Emerging quantum computers </h2>
825-
<div class="panel panel-default">
826-
<div class="panel-body">
827-
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
828-
<ol>
829-
<li> Many players (companies) racing to build (scalable) quantum computers.</li>
830-
<li> Different labs/companies are betting on different quantum platforms.</li>
831-
<li> Superconducting qubits, ion traps, photonic systems, topological qubits, and more</li>
832-
</ol>
833-
</div>
834-
</div>
835-
836-
837819
<!-- !split -->
838820
<h2 id="emerging-quantum-computers" class="anchor">Emerging quantum computers </h2>
839821
<div class="panel panel-default">
@@ -913,11 +895,11 @@ <h2 id="quantum-algorithms" class="anchor">Quantum algorithms </h2>
913895
<div class="panel-body">
914896
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
915897
<ol>
916-
<li> Variational eigensolvers</li>
917-
<li> Classical&ndash;quantum hybrid algorithms</li>
918-
<li> Quantum Machine Learning</li>
898+
<li> <b>Variational eigensolvers</b> and <b>Variational Quantum Circuits</b></li>
899+
<li> <b>Classical&ndash;quantum hybrid algorithms</b></li>
900+
<li> <b>Quantum Machine Learning</b></li>
919901
<li> Linear system solvers / SDPs / Convex Optimization</li>
920-
<li> Quantum neural nets</li>
902+
<li> <b>Quantum neural nets</b></li>
921903
<li> Solving differential equations</li>
922904
<li> more</li>
923905
</ol>
@@ -932,7 +914,6 @@ <h2 id="the-basic-concepts" class="anchor">The basic concepts </h2>
932914

933915
<p>Quantum technologies leverage principles of quantum mechanics to perform computations beyond classical capabilities.</p>
934916

935-
<b>Key Concepts:</b>
936917
<div class="panel panel-default">
937918
<div class="panel-body">
938919
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
@@ -947,7 +928,7 @@ <h2 id="the-basic-concepts" class="anchor">The basic concepts </h2>
947928

948929
<!-- !split -->
949930
<h2 id="quantum-speedups" class="anchor">Quantum Speedups </h2>
950-
<b>Why Quantum?</b>
931+
951932
<div class="panel panel-default">
952933
<div class="panel-body">
953934
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
@@ -1009,6 +990,7 @@ <h2 id="challenges-and-limitations" class="anchor">Challenges and Limitations </
1009990

1010991
<!-- !split -->
1011992
<h2 id="1-quantum-communication" class="anchor">1. Quantum Communication </h2>
993+
1012994
<div class="panel panel-default">
1013995
<div class="panel-body">
1014996
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
@@ -1070,17 +1052,6 @@ <h2 id="3-quantum-computing" class="anchor">3. Quantum Computing </h2>
10701052
</div>
10711053

10721054

1073-
<p>Examples are Grover's Algorithm</p>
1074-
$$
1075-
\mathcal{O}(\sqrt{N}) \text{ vs. } \mathcal{O}(N)
1076-
$$
1077-
1078-
<p>and Shor's Algorithm:</p>
1079-
$$
1080-
\text{Factoring in } \mathcal{O}((\log N)^3)
1081-
$$
1082-
1083-
10841055
<!-- !split -->
10851056
<h2 id="4-quantum-metrology" class="anchor">4. Quantum Metrology </h2>
10861057

doc/pub/week1/html/week1-reveal.html

Lines changed: 12 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -367,7 +367,7 @@ <h2 id="what-is-quantum-computing">What is quantum computing? </h2>
367367
<div class="alert alert-block alert-block alert-text-normal">
368368
<b></b>
369369
<p>
370-
<p>Formulated in the early 20th century to explain the behavior of subatomic particles. QM, and its specializations (quantum field theory, quantum chromodynamics, many-body physics etc.), have been spectacularly successful in explaining microscopic physical phenomena.</p>
370+
<p>Quantum mechanics, Formulated in the early 20th century, and its specializations (quantum field theory, quantum chromodynamics, many-body physics etc.), have been spectacularly successful in explaining microscopic physical phenomena.</p>
371371
</div>
372372
</section>
373373

@@ -379,7 +379,7 @@ <h2 id="the-exponentiality-of-qm">The exponentiality of QM </h2>
379379
<p>After nearly a century of study, the best (classical) methods for predicting the behavior of general quantum systems require exponential resources.</p>
380380
<ol>
381381
<p><li> The state of \( N \) particles requires at least \( 2^{N} \) numbers to describe.</li>
382-
<p><li> For \( N \sim 300 \) (the number of particles in a single uranium atom), \[
382+
<p><li> For \( N \sim 300 \) (the number of particles in a single uranium atom and looking only at spin degrees freedom), \[
383383
<p> 2^{300} \gg \approx 10^{82}\quad (\text{\# of atoms in the observable universe}).
384384
\]
385385
</p></li>
@@ -391,6 +391,7 @@ <h2 id="the-exponentiality-of-qm">The exponentiality of QM </h2>
391391

392392
<section>
393393
<h2 id="the-exponentiality-of-qm-i">The exponentiality of QM I </h2>
394+
394395
<div class="alert alert-block alert-block alert-text-normal">
395396
<b>How do physicists actually do (quantum) physics?</b>
396397
<p>
@@ -497,7 +498,7 @@ <h2 id="which-is-wrong">Which is wrong? </h2>
497498

498499
<p><li> Perhaps the most successful theory of nature to date.</li>
499500

500-
<p><li> In all its domains of applicability, we have never found experimental disagreement.</li>
501+
<p><li> In all its domains of applicability, we have never found experimental disagreement (for example <a href="https://iopscience.iop.org/article/10.1088/1742-6596/306/1/012036/pdf" target="_blank">test of the Pauli principle</a>).</li>
501502
</ul>
502503
<p>
503504
<p><li> Option 2: Polynomial-time classical factoring algorithm.</li>
@@ -564,19 +565,6 @@ <h2 id="present-day">Present day </h2>
564565
</div>
565566
</section>
566567

567-
<section>
568-
<h2 id="emerging-quantum-computers">Emerging quantum computers </h2>
569-
<div class="alert alert-block alert-block alert-text-normal">
570-
<b></b>
571-
<p>
572-
<ol>
573-
<p><li> Many players (companies) racing to build (scalable) quantum computers.</li>
574-
<p><li> Different labs/companies are betting on different quantum platforms.</li>
575-
<p><li> Superconducting qubits, ion traps, photonic systems, topological qubits, and more</li>
576-
</ol>
577-
</div>
578-
</section>
579-
580568
<section>
581569
<h2 id="emerging-quantum-computers">Emerging quantum computers </h2>
582570
<div class="alert alert-block alert-block alert-text-normal">
@@ -653,11 +641,11 @@ <h2 id="quantum-algorithms">Quantum algorithms </h2>
653641
<b>Algorithms to be run on near-term QCs:</b>
654642
<p>
655643
<ol>
656-
<p><li> Variational eigensolvers</li>
657-
<p><li> Classical&ndash;quantum hybrid algorithms</li>
658-
<p><li> Quantum Machine Learning</li>
644+
<p><li> <b>Variational eigensolvers</b> and <b>Variational Quantum Circuits</b></li>
645+
<p><li> <b>Classical&ndash;quantum hybrid algorithms</b></li>
646+
<p><li> <b>Quantum Machine Learning</b></li>
659647
<p><li> Linear system solvers / SDPs / Convex Optimization</li>
660-
<p><li> Quantum neural nets</li>
648+
<p><li> <b>Quantum neural nets</b></li>
661649
<p><li> Solving differential equations</li>
662650
<p><li> more</li>
663651
</ol>
@@ -671,9 +659,8 @@ <h2 id="the-basic-concepts">The basic concepts </h2>
671659

672660
<p>Quantum technologies leverage principles of quantum mechanics to perform computations beyond classical capabilities.</p>
673661

674-
<b>Key Concepts:</b>
675662
<div class="alert alert-block alert-block alert-text-normal">
676-
<b></b>
663+
<b>Key Concepts:</b>
677664
<p>
678665
<ol>
679666
<p><li> <b>Superposition:</b> Qubits can exist in a combination of states.</li>
@@ -685,9 +672,9 @@ <h2 id="the-basic-concepts">The basic concepts </h2>
685672

686673
<section>
687674
<h2 id="quantum-speedups">Quantum Speedups </h2>
688-
<b>Why Quantum?</b>
675+
689676
<div class="alert alert-block alert-block alert-text-normal">
690-
<b></b>
677+
<b>Why Quantum?</b>
691678
<p>
692679
<ol>
693680
<p><li> <b>Quantum Parallelism:</b> Process multiple states simultaneously.</li>
@@ -744,6 +731,7 @@ <h2 id="challenges-and-limitations">Challenges and Limitations </h2>
744731

745732
<section>
746733
<h2 id="1-quantum-communication">1. Quantum Communication </h2>
734+
747735
<div class="alert alert-block alert-block alert-text-normal">
748736
<b>Quantum Teleportation:</b>
749737
<p>
@@ -800,20 +788,6 @@ <h2 id="3-quantum-computing">3. Quantum Computing </h2>
800788
<p><li> Quantum parallelism arises from entangled qubits.</li>
801789
</ol>
802790
</div>
803-
804-
<p>Examples are Grover's Algorithm</p>
805-
<p>&nbsp;<br>
806-
$$
807-
\mathcal{O}(\sqrt{N}) \text{ vs. } \mathcal{O}(N)
808-
$$
809-
<p>&nbsp;<br>
810-
811-
<p>and Shor's Algorithm:</p>
812-
<p>&nbsp;<br>
813-
$$
814-
\text{Factoring in } \mathcal{O}((\log N)^3)
815-
$$
816-
<p>&nbsp;<br>
817791
</section>
818792

819793
<section>

doc/pub/week1/html/week1-solarized.html

Lines changed: 12 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -115,10 +115,6 @@
115115
('More', 2, None, 'more'),
116116
('The options', 2, None, 'the-options'),
117117
('Present day', 2, None, 'present-day'),
118-
('Emerging quantum computers',
119-
2,
120-
None,
121-
'emerging-quantum-computers'),
122118
('Emerging quantum computers',
123119
2,
124120
None,
@@ -511,7 +507,7 @@ <h2 id="what-is-quantum-computing">What is quantum computing? </h2>
511507
<div class="alert alert-block alert-block alert-text-normal">
512508
<b></b>
513509
<p>
514-
<p>Formulated in the early 20th century to explain the behavior of subatomic particles. QM, and its specializations (quantum field theory, quantum chromodynamics, many-body physics etc.), have been spectacularly successful in explaining microscopic physical phenomena.</p>
510+
<p>Quantum mechanics, Formulated in the early 20th century, and its specializations (quantum field theory, quantum chromodynamics, many-body physics etc.), have been spectacularly successful in explaining microscopic physical phenomena.</p>
515511
</div>
516512

517513

@@ -523,7 +519,7 @@ <h2 id="the-exponentiality-of-qm">The exponentiality of QM </h2>
523519
<p>After nearly a century of study, the best (classical) methods for predicting the behavior of general quantum systems require exponential resources.</p>
524520
<ol>
525521
<li> The state of \( N \) particles requires at least \( 2^{N} \) numbers to describe.</li>
526-
<li> For \( N \sim 300 \) (the number of particles in a single uranium atom), \[
522+
<li> For \( N \sim 300 \) (the number of particles in a single uranium atom and looking only at spin degrees freedom), \[
527523
<p> 2^{300} \gg \approx 10^{82}\quad (\text{\# of atoms in the observable universe}).
528524
\]
529525
</p></li>
@@ -534,6 +530,7 @@ <h2 id="the-exponentiality-of-qm">The exponentiality of QM </h2>
534530

535531
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
536532
<h2 id="the-exponentiality-of-qm-i">The exponentiality of QM I </h2>
533+
537534
<div class="alert alert-block alert-block alert-text-normal">
538535
<b>How do physicists actually do (quantum) physics?</b>
539536
<p>
@@ -629,7 +626,7 @@ <h2 id="which-is-wrong">Which is wrong? </h2>
629626
<li> Option 1: QM is wrong</li>
630627
<ul>
631628
<li> Perhaps the most successful theory of nature to date.</li>
632-
<li> In all its domains of applicability, we have never found experimental disagreement.</li>
629+
<li> In all its domains of applicability, we have never found experimental disagreement (for example <a href="https://iopscience.iop.org/article/10.1088/1742-6596/306/1/012036/pdf" target="_blank">test of the Pauli principle</a>).</li>
633630
</ul>
634631
<li> Option 2: Polynomial-time classical factoring algorithm.</li>
635632
<ul>
@@ -686,19 +683,6 @@ <h2 id="present-day">Present day </h2>
686683
</div>
687684

688685

689-
<!-- !split -->
690-
<h2 id="emerging-quantum-computers">Emerging quantum computers </h2>
691-
<div class="alert alert-block alert-block alert-text-normal">
692-
<b></b>
693-
<p>
694-
<ol>
695-
<li> Many players (companies) racing to build (scalable) quantum computers.</li>
696-
<li> Different labs/companies are betting on different quantum platforms.</li>
697-
<li> Superconducting qubits, ion traps, photonic systems, topological qubits, and more</li>
698-
</ol>
699-
</div>
700-
701-
702686
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
703687
<h2 id="emerging-quantum-computers">Emerging quantum computers </h2>
704688
<div class="alert alert-block alert-block alert-text-normal">
@@ -773,11 +757,11 @@ <h2 id="quantum-algorithms">Quantum algorithms </h2>
773757
<b>Algorithms to be run on near-term QCs:</b>
774758
<p>
775759
<ol>
776-
<li> Variational eigensolvers</li>
777-
<li> Classical&ndash;quantum hybrid algorithms</li>
778-
<li> Quantum Machine Learning</li>
760+
<li> <b>Variational eigensolvers</b> and <b>Variational Quantum Circuits</b></li>
761+
<li> <b>Classical&ndash;quantum hybrid algorithms</b></li>
762+
<li> <b>Quantum Machine Learning</b></li>
779763
<li> Linear system solvers / SDPs / Convex Optimization</li>
780-
<li> Quantum neural nets</li>
764+
<li> <b>Quantum neural nets</b></li>
781765
<li> Solving differential equations</li>
782766
<li> more</li>
783767
</ol>
@@ -791,9 +775,8 @@ <h2 id="the-basic-concepts">The basic concepts </h2>
791775

792776
<p>Quantum technologies leverage principles of quantum mechanics to perform computations beyond classical capabilities.</p>
793777

794-
<b>Key Concepts:</b>
795778
<div class="alert alert-block alert-block alert-text-normal">
796-
<b></b>
779+
<b>Key Concepts:</b>
797780
<p>
798781
<ol>
799782
<li> <b>Superposition:</b> Qubits can exist in a combination of states.</li>
@@ -805,9 +788,9 @@ <h2 id="the-basic-concepts">The basic concepts </h2>
805788

806789
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
807790
<h2 id="quantum-speedups">Quantum Speedups </h2>
808-
<b>Why Quantum?</b>
791+
809792
<div class="alert alert-block alert-block alert-text-normal">
810-
<b></b>
793+
<b>Why Quantum?</b>
811794
<p>
812795
<ol>
813796
<li> <b>Quantum Parallelism:</b> Process multiple states simultaneously.</li>
@@ -862,6 +845,7 @@ <h2 id="challenges-and-limitations">Challenges and Limitations </h2>
862845

863846
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
864847
<h2 id="1-quantum-communication">1. Quantum Communication </h2>
848+
865849
<div class="alert alert-block alert-block alert-text-normal">
866850
<b>Quantum Teleportation:</b>
867851
<p>
@@ -918,17 +902,6 @@ <h2 id="3-quantum-computing">3. Quantum Computing </h2>
918902
</div>
919903

920904

921-
<p>Examples are Grover's Algorithm</p>
922-
$$
923-
\mathcal{O}(\sqrt{N}) \text{ vs. } \mathcal{O}(N)
924-
$$
925-
926-
<p>and Shor's Algorithm:</p>
927-
$$
928-
\text{Factoring in } \mathcal{O}((\log N)^3)
929-
$$
930-
931-
932905
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
933906
<h2 id="4-quantum-metrology">4. Quantum Metrology </h2>
934907

0 commit comments

Comments
 (0)