|
| 1 | +import math |
| 2 | +import numpy as np |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +from torch.utils.data import TensorDataset, DataLoader |
| 6 | +import matplotlib.pyplot as plt |
| 7 | + |
| 8 | +# ---------------------------- |
| 9 | +# Problem setup: Runge function |
| 10 | +# ---------------------------- |
| 11 | +def runge(x): |
| 12 | + # x: numpy array |
| 13 | + return 1.0 / (1.0 + 25.0 * x**2) |
| 14 | + |
| 15 | +# ---------------------------- |
| 16 | +# MLP: two hidden layers |
| 17 | +# ---------------------------- |
| 18 | +class MLP(nn.Module): |
| 19 | + def __init__(self, in_dim=1, hidden1=64, hidden2=64, out_dim=1): |
| 20 | + super().__init__() |
| 21 | + self.net = nn.Sequential( |
| 22 | + nn.Linear(in_dim, hidden1), |
| 23 | + nn.Sigmoid(), |
| 24 | + nn.Linear(hidden1, hidden2), |
| 25 | + nn.Sigmoid(), |
| 26 | + nn.Linear(hidden2, out_dim), |
| 27 | + ) |
| 28 | + |
| 29 | + def forward(self, x): |
| 30 | + return self.net(x) |
| 31 | + |
| 32 | +# ---------------------------- |
| 33 | +# Training utilities |
| 34 | +# ---------------------------- |
| 35 | +def train(model, loader, optimizer, loss_fn, device): |
| 36 | + model.train() |
| 37 | + running = 0.0 |
| 38 | + for xb, yb in loader: |
| 39 | + xb = xb.to(device) |
| 40 | + yb = yb.to(device) |
| 41 | + optimizer.zero_grad(set_to_none=True) |
| 42 | + pred = model(xb) |
| 43 | + loss = loss_fn(pred, yb) |
| 44 | + loss.backward() |
| 45 | + optimizer.step() |
| 46 | + running += loss.item() * xb.size(0) |
| 47 | + return running / len(loader.dataset) |
| 48 | + |
| 49 | +@torch.no_grad() |
| 50 | +def evaluate(model, loader, loss_fn, device): |
| 51 | + model.eval() |
| 52 | + running = 0.0 |
| 53 | + for xb, yb in loader: |
| 54 | + xb = xb.to(device) |
| 55 | + yb = yb.to(device) |
| 56 | + pred = model(xb) |
| 57 | + loss = loss_fn(pred, yb) |
| 58 | + running += loss.item() * xb.size(0) |
| 59 | + return running / len(loader.dataset) |
| 60 | + |
| 61 | +# ---------------------------- |
| 62 | +# Main |
| 63 | +# ---------------------------- |
| 64 | +def main(): |
| 65 | + # Reproducibility |
| 66 | + torch.manual_seed(7) |
| 67 | + np.random.seed(7) |
| 68 | + |
| 69 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 70 | + print("Device:", device) |
| 71 | + |
| 72 | + # Generate training data on [-1, 1] |
| 73 | + n_train = 256 |
| 74 | + X_train = np.random.uniform(-1.0, 1.0, size=(n_train, 1)).astype(np.float32) |
| 75 | + y_train = runge(X_train).astype(np.float32) |
| 76 | + |
| 77 | + # Small validation set |
| 78 | + n_val = 128 |
| 79 | + X_val = np.random.uniform(-1.0, 1.0, size=(n_val, 1)).astype(np.float32) |
| 80 | + y_val = runge(X_val).astype(np.float32) |
| 81 | + |
| 82 | + # Torch datasets/loaders |
| 83 | + train_ds = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train)) |
| 84 | + val_ds = TensorDataset(torch.from_numpy(X_val), torch.from_numpy(y_val)) |
| 85 | + train_loader = DataLoader(train_ds, batch_size=64, shuffle=True) |
| 86 | + val_loader = DataLoader(val_ds, batch_size=128, shuffle=False) |
| 87 | + |
| 88 | + # Model, loss, optimizer (Adam) |
| 89 | + model = MLP(1, 128, 128, 1).to(device) |
| 90 | + loss_fn = nn.MSELoss() |
| 91 | + optimizer = torch.optim.Adam(model.parameters(), lr=0.01) |
| 92 | + |
| 93 | + # Optional: mild cosine LR schedule for smooth convergence |
| 94 | + scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=1500) |
| 95 | + |
| 96 | + # Train |
| 97 | + epochs = 1500 |
| 98 | + best_val = math.inf |
| 99 | + best_state = None |
| 100 | + for ep in range(1, epochs + 1): |
| 101 | + tr_loss = train(model, train_loader, optimizer, loss_fn, device) |
| 102 | + val_loss = evaluate(model, val_loader, loss_fn, device) |
| 103 | + scheduler.step() |
| 104 | + |
| 105 | + if val_loss < best_val: |
| 106 | + best_val = val_loss |
| 107 | + best_state = {k: v.cpu().clone() for k, v in model.state_dict().items()} |
| 108 | + |
| 109 | + if ep % 100 == 0 or ep == 1 or ep == epochs: |
| 110 | + print(f"Epoch {ep:4d} | train MSE: {tr_loss:.4e} | val MSE: {val_loss:.4e}") |
| 111 | + |
| 112 | + # Restore best model |
| 113 | + if best_state is not None: |
| 114 | + model.load_state_dict(best_state) |
| 115 | + |
| 116 | + # Evaluate on a dense grid for plotting |
| 117 | + xs = np.linspace(-1.0, 1.0, 500, dtype=np.float32).reshape(-1, 1) |
| 118 | + ys_true = runge(xs).reshape(-1) |
| 119 | + with torch.no_grad(): |
| 120 | + yhat = model(torch.from_numpy(xs).to(device)).cpu().numpy().reshape(-1) |
| 121 | + |
| 122 | + # Plot |
| 123 | + plt.figure() |
| 124 | + plt.plot(xs, ys_true, label="Runge function (true)") |
| 125 | + plt.plot(xs, yhat, linestyle="--", label="Neural net (prediction)") |
| 126 | + # also scatter training points (optional) |
| 127 | + plt.scatter(X_train, y_train, s=10, alpha=0.3, label="Train samples") |
| 128 | + plt.xlabel("x") |
| 129 | + plt.ylabel("f(x)") |
| 130 | + plt.title("Approximating the Runge function with a 2-hidden-layer MLP (Adam)") |
| 131 | + plt.legend() |
| 132 | + plt.tight_layout() |
| 133 | + plt.show() |
| 134 | + |
| 135 | +if __name__ == "__main__": |
| 136 | + main() |
0 commit comments