Skip to content

Backend Django Views and Analytics for Dashboard Home #30

@Collert

Description

@Collert

Backend Implementation for Dashboard Analytics Data

Overview

Implement Django views and context processors to provide analytics data for the admin dashboard home page template. The dashboard view will gather real-time and historical data to render the "at a glance" dashboard with all necessary analytics.

Required Implementation

1. Dashboard View and Context

View: AdminDashboardView in admin/views.py

  • Render dashboard template with analytics context
  • Gather all analytics data in a single view
  • Implement caching for performance
  • Handle date filtering and time zone considerations

2. Analytics Service Layer

Service: DashboardAnalyticsService in admin/services.py

  • Centralize all analytics calculations
  • Provide methods for different metric types
  • Handle data aggregation and formatting
  • Implement caching strategies

3. Analytics Data Methods

Today's Sales Analytics

def get_todays_sales_data(self):
    return {
        'total_revenue': self._calculate_daily_revenue(),
        'order_count': self._get_completed_orders_count(),
        'average_order_value': self._calculate_avg_order_value(),
        'hourly_breakdown': self._get_hourly_sales(),
        'vs_yesterday': self._compare_with_yesterday(),
        'vs_last_week': self._compare_with_last_week()
    }

Customer Analytics

def get_todays_customer_data(self):
    return {
        'total_customers': self._count_unique_customers(),
        'new_customers': self._count_new_customers(),
        'returning_customers': self._count_returning_customers(),
        'predicted_remaining': self._predict_remaining_customers(),
        'peak_hours': self._identify_peak_hours(),
        'hourly_customer_flow': self._get_hourly_customer_count()
    }

Operations Overview

def get_operations_overview(self):
    return {
        'order_status_distribution': self._get_order_status_stats(),
        'popular_items': self._get_popular_menu_items(),
        'table_turnover_rate': self._calculate_table_turnover(),
        'staff_performance': self._get_staff_metrics(),
        'inventory_alerts': self._get_low_stock_alerts(),
        'system_notifications': self._get_system_alerts()
    }

4. Prediction Algorithm Implementation

Customer Prediction Service:

  • Historical pattern analysis using previous weeks' data
  • Time-of-day and day-of-week patterns
  • Moving average calculations
  • Seasonal adjustments (lunch rush, dinner rush)
def predict_remaining_customers(self):
    current_hour = timezone.now().hour
    historical_data = self._get_historical_hourly_data()
    remaining_hours_pattern = self._analyze_remaining_hours_pattern()
    return self._calculate_prediction_with_confidence()

Django Template Context Structure

context = {
    'dashboard_date': timezone.now().date(),
    'last_updated': timezone.now(),
    'sales_data': {
        'total_revenue': 2500.00,
        'order_count': 125,
        'average_order_value': 20.00,
        'hourly_breakdown': [...],
        'trend_indicators': {...}
    },
    'customer_data': {
        'actual_count': 89,
        'predicted_remaining': 45,
        'new_vs_returning': {...},
        'hourly_flow': [...]
    },
    'operations_data': {
        'order_statuses': {...},
        'popular_items': [...],
        'alerts': [...],
        'performance_metrics': {...}
    },
    'chart_data': {
        'sales_trend': [...],
        'customer_flow': [...],
        'revenue_comparison': [...]
    }
}

Database Optimization

Required Model Extensions

  • Add analytics-friendly methods to existing models (Order, Customer, MenuItem)
  • Create database indexes for common analytics queries
  • Implement model managers with analytics querysets

Caching Strategy

  • View-level caching: Cache entire dashboard context for 5 minutes
  • Method-level caching: Cache individual analytics calculations
  • Template fragment caching: Cache expensive chart data rendering
  • Use Django's cache framework with Redis backend

Database Indexes

# Add to existing models
class Order(models.Model):
    # ... existing fields
    class Meta:
        indexes = [
            models.Index(fields=['created_at', 'status']),
            models.Index(fields=['created_at', 'total_amount']),
            models.Index(fields=['customer', 'created_at']),
        ]

class Customer(models.Model):
    # ... existing fields
    class Meta:
        indexes = [
            models.Index(fields=['created_at']),
            models.Index(fields=['last_visit_date']),
        ]

Implementation Tasks

  • Create AdminDashboardView class-based view
  • Implement DashboardAnalyticsService service layer
  • Add analytics methods to existing models
  • Create customer prediction algorithm
  • Implement caching layer with Redis
  • Add database indexes for analytics queries
  • Create dashboard URL routing
  • Add timezone handling for accurate daily calculations
  • Write comprehensive unit tests for analytics functions
  • Performance testing and query optimization
  • Add management commands for analytics data maintenance

URL Configuration

# admin/urls.py
urlpatterns = [
    path('dashboard/', AdminDashboardView.as_view(), name='admin_dashboard'),
    # ... other admin URLs
]

Dependencies

  • Django's cache framework configured with Redis
  • Existing Order, Customer, and MenuItem models
  • Django timezone utilities for accurate date handling
  • Template system for rendering dashboard

Performance Requirements

  • Dashboard view should load within 1 second
  • Analytics calculations cached for 5 minutes
  • Database queries optimized with select_related/prefetch_related
  • Minimal database hits through effective caching

Success Criteria

  • ✅ Dashboard view renders with all analytics data
  • ✅ Customer prediction accuracy >70%
  • ✅ Page load time <1 second with caching
  • ✅ 100% test coverage for analytics functions
  • ✅ Caching reduces database queries by >80%
  • ✅ All time zone handling is accurate
  • ✅ Analytics data updates reflect real-time changes

Related Issues

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions