-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Milestone
Description
Backend Implementation for Dashboard Analytics Data
Overview
Implement Django views and context processors to provide analytics data for the admin dashboard home page template. The dashboard view will gather real-time and historical data to render the "at a glance" dashboard with all necessary analytics.
Required Implementation
1. Dashboard View and Context
View: AdminDashboardView in admin/views.py
- Render dashboard template with analytics context
- Gather all analytics data in a single view
- Implement caching for performance
- Handle date filtering and time zone considerations
2. Analytics Service Layer
Service: DashboardAnalyticsService in admin/services.py
- Centralize all analytics calculations
- Provide methods for different metric types
- Handle data aggregation and formatting
- Implement caching strategies
3. Analytics Data Methods
Today's Sales Analytics
def get_todays_sales_data(self):
return {
'total_revenue': self._calculate_daily_revenue(),
'order_count': self._get_completed_orders_count(),
'average_order_value': self._calculate_avg_order_value(),
'hourly_breakdown': self._get_hourly_sales(),
'vs_yesterday': self._compare_with_yesterday(),
'vs_last_week': self._compare_with_last_week()
}Customer Analytics
def get_todays_customer_data(self):
return {
'total_customers': self._count_unique_customers(),
'new_customers': self._count_new_customers(),
'returning_customers': self._count_returning_customers(),
'predicted_remaining': self._predict_remaining_customers(),
'peak_hours': self._identify_peak_hours(),
'hourly_customer_flow': self._get_hourly_customer_count()
}Operations Overview
def get_operations_overview(self):
return {
'order_status_distribution': self._get_order_status_stats(),
'popular_items': self._get_popular_menu_items(),
'table_turnover_rate': self._calculate_table_turnover(),
'staff_performance': self._get_staff_metrics(),
'inventory_alerts': self._get_low_stock_alerts(),
'system_notifications': self._get_system_alerts()
}4. Prediction Algorithm Implementation
Customer Prediction Service:
- Historical pattern analysis using previous weeks' data
- Time-of-day and day-of-week patterns
- Moving average calculations
- Seasonal adjustments (lunch rush, dinner rush)
def predict_remaining_customers(self):
current_hour = timezone.now().hour
historical_data = self._get_historical_hourly_data()
remaining_hours_pattern = self._analyze_remaining_hours_pattern()
return self._calculate_prediction_with_confidence()Django Template Context Structure
context = {
'dashboard_date': timezone.now().date(),
'last_updated': timezone.now(),
'sales_data': {
'total_revenue': 2500.00,
'order_count': 125,
'average_order_value': 20.00,
'hourly_breakdown': [...],
'trend_indicators': {...}
},
'customer_data': {
'actual_count': 89,
'predicted_remaining': 45,
'new_vs_returning': {...},
'hourly_flow': [...]
},
'operations_data': {
'order_statuses': {...},
'popular_items': [...],
'alerts': [...],
'performance_metrics': {...}
},
'chart_data': {
'sales_trend': [...],
'customer_flow': [...],
'revenue_comparison': [...]
}
}Database Optimization
Required Model Extensions
- Add analytics-friendly methods to existing models (Order, Customer, MenuItem)
- Create database indexes for common analytics queries
- Implement model managers with analytics querysets
Caching Strategy
- View-level caching: Cache entire dashboard context for 5 minutes
- Method-level caching: Cache individual analytics calculations
- Template fragment caching: Cache expensive chart data rendering
- Use Django's cache framework with Redis backend
Database Indexes
# Add to existing models
class Order(models.Model):
# ... existing fields
class Meta:
indexes = [
models.Index(fields=['created_at', 'status']),
models.Index(fields=['created_at', 'total_amount']),
models.Index(fields=['customer', 'created_at']),
]
class Customer(models.Model):
# ... existing fields
class Meta:
indexes = [
models.Index(fields=['created_at']),
models.Index(fields=['last_visit_date']),
]Implementation Tasks
- Create
AdminDashboardViewclass-based view - Implement
DashboardAnalyticsServiceservice layer - Add analytics methods to existing models
- Create customer prediction algorithm
- Implement caching layer with Redis
- Add database indexes for analytics queries
- Create dashboard URL routing
- Add timezone handling for accurate daily calculations
- Write comprehensive unit tests for analytics functions
- Performance testing and query optimization
- Add management commands for analytics data maintenance
URL Configuration
# admin/urls.py
urlpatterns = [
path('dashboard/', AdminDashboardView.as_view(), name='admin_dashboard'),
# ... other admin URLs
]Dependencies
- Django's cache framework configured with Redis
- Existing Order, Customer, and MenuItem models
- Django timezone utilities for accurate date handling
- Template system for rendering dashboard
Performance Requirements
- Dashboard view should load within 1 second
- Analytics calculations cached for 5 minutes
- Database queries optimized with select_related/prefetch_related
- Minimal database hits through effective caching
Success Criteria
- ✅ Dashboard view renders with all analytics data
- ✅ Customer prediction accuracy >70%
- ✅ Page load time <1 second with caching
- ✅ 100% test coverage for analytics functions
- ✅ Caching reduces database queries by >80%
- ✅ All time zone handling is accurate
- ✅ Analytics data updates reflect real-time changes
Related Issues
- Blocks: Frontend Dashboard Home implementation
- Part of: Implement Custom Admin Interface for Restaurant Management (Implement Custom Admin Interface #29)
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels