Skip to content

File "<ipython-input-18-8ca944b6a0f0>", line 120 isBad = t_our < 0.5 ^ SyntaxError: invalid syntax #9

@ADITYASHAH-IITP

Description

@ADITYASHAH-IITP

import numpy as np
import matplotlib.pyplot as plt
import imageio
import scipy, scipy.misc, scipy.signal
import cv2
import sys

def computeTextureWeights(fin, sigma, sharpness):
dt0_v = np.vstack((np.diff(fin, n=1, axis=0), fin[0,:]-fin[-1,:]))
dt0_h = np.vstack((np.diff(fin, n=1, axis=1).conj().T, fin[:,0].conj().T-fin[:,-1].conj().T)).conj().T

gauker_h = scipy.signal.convolve2d(dt0_h, np.ones((1,sigma)), mode='same')
gauker_v = scipy.signal.convolve2d(dt0_v, np.ones((sigma,1)), mode='same')

W_h = 1/(np.abs(gauker_h)*np.abs(dt0_h)+sharpness)
W_v = 1/(np.abs(gauker_v)*np.abs(dt0_v)+sharpness)

return  W_h, W_v

def solveLinearEquation(IN, wx, wy, lamda):
[r, c] = IN.shape
k = r * c
dx = -lamda * wx.flatten('F')
dy = -lamda * wy.flatten('F')
tempx = np.roll(wx, 1, axis=1)
tempy = np.roll(wy, 1, axis=0)
dxa = -lamda *tempx.flatten('F')
dya = -lamda *tempy.flatten('F')
tmp = wx[:,-1]
tempx = np.concatenate((tmp[:,None], np.zeros((r,c-1))), axis=1)
tmp = wy[-1,:]
tempy = np.concatenate((tmp[None,:], np.zeros((r-1,c))), axis=0)
dxd1 = -lamda * tempx.flatten('F')
dyd1 = -lamda * tempy.flatten('F')

wx[:,-1] = 0
wy[-1,:] = 0
dxd2 = -lamda * wx.flatten('F')
dyd2 = -lamda * wy.flatten('F')

Ax = scipy.sparse.spdiags(np.concatenate((dxd1[:,None], dxd2[:,None]), axis=1).T, np.array([-k+r,-r]), k, k)
Ay = scipy.sparse.spdiags(np.concatenate((dyd1[None,:], dyd2[None,:]), axis=0), np.array([-r+1,-1]), k, k)
D = 1 - ( dx + dy + dxa + dya)
A = ((Ax+Ay) + (Ax+Ay).conj().T + scipy.sparse.spdiags(D, 0, k, k)).T

tin = IN[:,:]
tout = scipy.sparse.linalg.spsolve(A, tin.flatten('F'))
OUT = np.reshape(tout, (r, c), order='F')

return OUT

def tsmooth(img, lamda=0.01, sigma=3.0, sharpness=0.001):
I = cv2.normalize(img.astype('float64'), None, 0.0, 1.0, cv2.NORM_MINMAX)
x = np.copy(I)
wx, wy = computeTextureWeights(x, sigma, sharpness)
S = solveLinearEquation(I, wx, wy, lamda)
return S

def rgb2gm(I):
if (I.shape[2] == 3):
I = cv2.normalize(I.astype('float64'), None, 0.0, 1.0, cv2.NORM_MINMAX)
I = np.abs((I[:,:,0]*I[:,:,1]*I[:,:,2]))**(1/3)

return I

def applyK(I, k, a=-0.3293, b=1.1258):
f = lambda x: np.exp((1-xa)*b)
beta = f(k)
gamma = k
a
J = (I**gamma)*beta
return J

def entropy(X):
tmp = X * 255
tmp[tmp > 255] = 255
tmp[tmp<0] = 0
tmp = tmp.astype(np.uint8)
_, counts = np.unique(tmp, return_counts=True)
pk = np.asarray(counts)
pk = 1.0*pk / np.sum(pk, axis=0)
S = -np.sum(pk * np.log2(pk), axis=0)
return S

def maxEntropyEnhance(I, isBad, a=-0.3293, b=1.1258):
# Esatimate k
tmp = cv2.resize(I, (50,50), interpolation=cv2.INTER_AREA)
tmp[tmp<0] = 0
tmp = tmp.real
Y = rgb2gm(tmp)

isBad = isBad * 1
isBad = scipy.misc.imresize(isBad, (50,50), interp='bicubic', mode='F')
isBad[isBad<0.5] = 0
isBad[isBad>=0.5] = 1
Y = Y[isBad==1]

if Y.size == 0:
   J = I
   return J

f = lambda k: -entropy(applyK(Y, k))
opt_k = scipy.optimize.fminbound(f, 1, 7)

# Apply k
J = applyK(I, opt_k, a, b) - 0.01
return J

def Ying_2017_CAIP(img, mu=0.5, a=-0.3293, b=1.1258):
lamda = 0.5
sigma = 5
I = cv2.normalize(img.astype('float64'), None, 0.0, 1.0, cv2.NORM_MINMAX)

# Weight matrix estimation
t_b = np.max(I, axis=2)
t_our = cv2.resize(tsmooth(np.array(Image.fromarray(t_b, mode="F").resize((int(0.5 * t_b.shape[0]), int(t_b.shape[1] * 0.5)),resample=PIL.Image.BICUBIC), lamda, sigma), (t_b.shape[1], t_b.shape[0]), interpolation=cv2.INTER_AREA)
 
# Apply camera model with k(exposure ratio)
isBad = t_our < 0.5
J = maxEntropyEnhance(I, isBad)

# W: Weight Matrix
t = np.zeros((t_our.shape[0], t_our.shape[1], I.shape[2]))
for i in range(I.shape[2]):
    t[:,:,i] = t_our
W = t**mu

I2 = I*W
J2 = J*(1-W)

result = I2 + J2
result = result * 255
result[result > 255] = 255
result[result<0] = 0
return result.astype(np.uint8)

def main():
img_name = sys.argv[1]
img = imageio.imread('02.jpg')
result = Ying_2017_CAIP(img)
plt.imshow(result)
plt.show()

if name == 'main':
main()

its not working,first there was some problem with weight matrix estimation because of some module were removed from it,so I find another way ,but its still not working

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions